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Abstract

Although traditional literature on mortality modeling has focused on single countries in isolation, recent con-

tributions have progressively moved toward joint models for multiple countries. Besides favoring borrowing of

information to improve age-period forecasts, this perspective has also potentials to infer local similarities among

countries’ mortality patterns in specific age classes and periods that could unveil unexplored demographic trends,

while guiding the design of targeted policies. Advancements along this latter relevant direction are currently

undermined by the lack of a multi-country model capable of incorporating the core structures of age-period

mortality surfaces together with clustering patterns among countries that are not global, but rather vary locally

across different combinations of ages and periods. We cover this gap by developing a novel Bayesian model for

log-mortality rates that characterizes the age structure of mortality through a b-spline expansion whose country-

specific dynamic coefficients encode both changes of this age structure across periods and also local clustering

patterns among countries under a time-dependent random partition prior for these country-specific dynamic

coefficients. While flexible, this formulation admits tractable posterior inference leveraging a suitably-designed

Gibbs-sampler. The application to mortality data from 14 countries unveils local similarities highlighting both

previously-recognized demographic phenomena and also yet-unexplored trends.
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1. Introduction

The changes in life expectancy, population structure and welfare systems over the past decades

have stimulated a growing demand for novel statistical models capable of characterizing hetero-

genous mortality patterns across ages, periods and countries, while providing reliable probabilistic

forecasts with rigorous uncertainty quantification [e.g., Lutz and Kc, 2010, Raftery et al., 2013,

Hunt and Blake, 2021]. Advancements along these lines are fundamental in guiding health-care,

social, environmental and retirement policies, thereby motivating active research on mortality
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modeling within several fields, such as demography [e.g., Lee and Miller, 2001, Li and Lee, 2005,

De Jong and Tickle, 2006, Raftery et al., 2013, Li et al., 2013, Hyndman et al., 2013, Mazzuco

et al., 2018, Camarda, 2019, Léger and Mazzuco, 2021], statistics [e.g., Lee and Carter, 1992,

Hyndman and Ullah, 2007, Alexopoulos et al., 2019, Tang et al., 2022, Aliverti et al., 2022, Lam

and Wang, 2023, Pavone et al., 2024, Debon et al., 2023, Dimai, 2025] and actuarial sciences [e.g.,

Haberman and Renshaw, 2011, Hatzopoulos and Haberman, 2013, Kleinow, 2015, Antonio et al.,

2015, Currie, 2016, Enchev et al., 2017, Wong et al., 2018, Dong et al., 2020, Scognamiglio, 2022],

among others. As clarified in these contributions, such an active research on mortality has wit-

nessed in the recent years a progressive shift away from analyzing the single countries in isolation

and towards joint modeling of age-period mortality surfaces within a multi-country setting.

The above perspective is inherently motivated by the fact that countries are not isolated entit-

ies, but rather display similar global trends in age-specific mortality patterns (see Figure 1) reg-

ulated by common exogenous and endogenous factors, such as advancements in health-care [e.g.,

Vallin and Meslé, 2004]. As such, joint modeling of multiple countries can facilitate effective bor-

rowing of information to improve age-period mortality forecasts, while opening the avenues for

inference on local similarities and differences among countries’ mortality patterns in specific age

classes and periods that could unveil unexplored demographic trends, possibly arising from tar-

geted policies adopted by certain countries. Addressing both objectives would require a unique

formulation that accounts not only for the core structures of country-specific age-period mortality

surfaces, but also for local clustering patterns between countries arising from overlaps among these

country-specific surfaces in particular combinations of ages and periods. Although state-of-the-

art multi-country mortality models are still not designed to include these fundamental dynamics,
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Figure 1: Log-mortality rates at age 0 (first panel) and 55 (second panel) in Italy (ita), Sweden (swe), the United
Kingdom (uk) and the United States (usa) between 1933 and 2020.
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local heterogeneities in country-specific mortality rates across ages and periods are recognized in

demographic research [e.g., Vallin and Meslé, 2004, Vaupel et al., 2011] and find strong evidence

in mortality data. For example, the first panel of Figure 1 illustrates the infant log-mortality

rates in Italy, Sweden, the United Kingdom (uk) and the United States (usa) from 1933 to 2020,

as retrieved from the Human Mortality Database (hmd: https://www.mortality.org/). During

the first forty years, the uk and the usa display overlapping mortality trajectories, which then

diverge after 1980. Conversely, Italy follows a distinct path until 1985, after which it aligns with

the uk for approximately ten years. Interestingly, as shown within the second panel of Figure 1,

these grouping structures vary not only across periods, but also with different ages. For instance,

the clustering among the uk and the usa at infant ages is no more visible for individuals aged 55,

who show, instead, a remarkable overlap between Italy and the uk for a large time window.

Accounting for the above patterns via a principled model-based representation would not only

provide a more realistic characterization of age-period mortality surfaces across multiple coun-

tries, but could also open the avenues for rigorously answering important scientific questions, e.g.,

on the differences among low-mortality countries [Oeppen and Vaupel, 2002, Vaupel et al., 2011]

and the corresponding socio-economic determinants [Marmot, 2005]. As discussed previously, al-

though the literature on multi-country mortality modeling has witnessed extensive advancements

over the recent years, state-of-the-art contributions are not designed to address this endeavor. In

fact, a common solution in multi-country mortality modeling relies on extending structured bi-

linear decompositions of age-period mortality surfaces for a single country, such as the one by

Lee and Carter [1992], to joint formulations that include country-specific parameters and a com-

mon component shared across periods [e.g., Li and Lee, 2005] or ages [e.g., Kleinow, 2015]. This

general perspective improves forecasts and can be further extended to more sophisticated repres-

entations leveraging multi-country generalizations [Hyndman et al., 2013, Lam and Wang, 2023]

of functional principal components constructions [Hyndman and Ullah, 2007], or joint decompos-

itions of the country-age-period mortality tensor [Dong et al., 2020]; see also Enchev et al. [2017].

However, all these solutions are not designed to infer group structures among countries based on

similarities in the associated mortality rates. Such an issue is also found in related Bayesian hier-

archical formulations relying on conditionally independent models for each country linked by a

common prior distribution on shared underlying parameters [e.g., Raftery et al., 2013, Antonio

et al., 2015, Aliverti et al., 2022].

An effective direction for overcoming the aforementioned issues is to move towards more recent

extensions of the above formulations which explicitly include notions of clustering among countries

in terms of the corresponding mortality patterns [Hatzopoulos and Haberman, 2013, Léger and

Mazzuco, 2021, Schnürch et al., 2021, Tang et al., 2022, Scognamiglio, 2022, Debon et al., 2023,

Dimai, 2025]. Albeit providing meaningful representations for model-based clustering of mortality

surfaces, the overarching focus of these extensions is on global grouping structures, instead of local

ones changing with different combinations of ages and periods. As such, countries are not allowed

to display varying clustering behaviors at different ages [Léger and Mazzuco, 2021], time periods

[Hatzopoulos and Haberman, 2013], or both dimensions [Tang et al., 2022, Schnürch et al., 2021,

Scognamiglio, 2022, Dimai, 2025]. Recalling the previous discussion of Figure 1, these constraints

https://www.mortality.org/
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are not supported by the observed age-period mortality data and hinder the possibility of learning

nuanced grouping structures, possibly informing on unexplored localized demographic trends that

are visible only for specific combinations of ages and periods.

To our knowledge, the only attempt to remove the constraints imposed by the above global clus-

tering perspectives can be found in the application of latent class clustering models to multi-

country age-period mortality data in Debon et al. [2023]. Although this contribution has the merit

of recognizing the importance of moving beyond global clustering perspectives, a direct applica-

tion of latent class clustering methods without the additional inclusion of the specific structures

of age-period mortality surfaces could undermine the flexibility of the resulting procedure in un-

covering local clustering patterns. This potential issue finds evidence in Figure 1 of Debon et al.

[2023] where the inferred grouping structures resemble more closely those obtained under a global

perspective, than a local one. For example, according to Figure 1 of Debon et al. [2023], at infant

ages, all countries share the same cluster in the entire time window analyzed, a behavior which

is not in line with the local clustering structures displayed by the observed mortality data in our

Figure 1. In addition, similarly to all cluster-based extensions of multi-country mortality models,

also Debon et al. [2023] requires to specify the unknown number of groups, a challenging task in

practice, without a uniquely-accepted solution.

Motivated by the above discussion and by the impact of addressing the aforementioned chal-

lenges in multi-country mortality modeling, we propose and develop in Section 2 an innovative and

principled Bayesian formulation that accounts for the core structures of age-period mortality sur-

faces, and crucially incorporates clustering patterns among countries which are allowed to vary

flexibly across different combinations of ages and periods. This is accomplished by modeling the

smooth age patterns of mortality via a flexible linear combination of b-spline bases [e.g., Camarda,

2019, Pavone et al., 2024], whose country-specific dynamic coefficients evolve across calendar years

through carefully-designed stochastic processes of time relying on a temporal random partition

prior inspired by the general construction in Page et al. [2022]. Crucially, these stochastic pro-

cesses for the joint time trajectories of the country-specific coefficients associated to the different

b-spline bases provide a principled characterization of the time changes in the age patterns of

mortality across periods, while allowing the grouping structures exhibited by countries to change

both in time and across the bases’ coefficients associated with the different ages. As such, the

resulting representation facilitates the identification of locally converging or diverging trends in

multi-country age-period mortality surfaces, while crucially preserving a structured representation

that accounts for the core characteristics of these surfaces.

As clarified in Section 3, the proposed structured representation, albeit flexible, is amenable to

tractable posterior inference via a carefully-designed Gibbs-sampling algorithm that learns auto-

matically the unknown total number of clusters and facilitates both point estimation and uncer-

tainty quantification on mortality patterns and grouping structures. The simulation studies within

Section 4 and the application to mortality data of 14 countries from 1933 until 2020 in Section 5,

not only confirm the ability of the proposed model to accurately learn these local grouping struc-

tures, but also unveil unique localized similarities among specific countries, which highlight both

known demographic phenomena and also yet-unexplored trends acting on selected countries over
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specific combinations of ages and periods. Concluding remarks can be found in Section 6 where we

also clarify that, although motivated by multi-country age-period mortality data, the proposed

model has broader scope and impact, in that it allows to detect localized overlaps among surfaces

associated with different populations. To our knowledge, general methodological contributions

exploring this direction are limited.

2. Model Formulation

Let us denote with dixt and eixt, respectively, the observed death counts and the average number

of individuals at risk within country i = 1, . . . , n, at age x ∈ X and for period t = 1, . . . , T (corres-

ponding, in our case, to calendar years). Consistent with the overarching focus in mortality models

for both single and multiple countries [see, for example, Currie, 2016, Enchev et al., 2017, Hunt

and Blake, 2021], our interest lies in the analysis of the country-specific age-period log-mortality

rates logmixt = log(dixt/eixt) for which we assume

logmixt = fit(x) + εixt, with εixt ∼ N(0, σ2
i ), (1)

independently for i = 1, . . . , n, x ∈ X and t = 1, . . . , T , where fit(x) = E[logmixt | fit(x)] is the

expected log-mortality rate surface for the i–th country expressed as a function of age x ∈ X that

is allowed to vary across periods t = 1, . . . , T . The general surface plus Gaussian noise formulation

in (1) is common to several mortality models for both single and multiple countries [e.g., Currie,

2016, Enchev et al., 2017, Hunt and Blake, 2021]. In addition, as recently proved by Pavone et al.

[2024, Proposition 2.1] under a single-country perspective, when eixt is sufficiently large (as in

standard demographic settings), the above formulation arises directly from an underlying Poisson

log-normal model for the observed death counts dixt that properly accounts for possible overd-

ispersion; see also Wong et al. [2018]. Nonetheless, as discussed in Section 1, none of the available

multi-country models provides a structured representation for fit(x) that incorporates the core

age-period patterns of mortality, while allowing countries to cluster differently as x and t vary.

Addressing the above gap would require the design of a structured representation for the expec-

ted log-mortality rate surface which ensures that fit(x) varies (i) smoothly as a function of age x,

for every i = 1, . . . , n and t = 1, . . . , T , and (ii) dynamically with periods t, for each i = 1, . . . , n

and x ∈ X , while (iii) allowing fit(x) and fi′t(x) for any two generic countries i and i′ to cluster

(i.e., display similar values) only for those combinations of x and t in which there is empirical evid-

ence of overlapping patterns in the log-mortality rates of i and i′. To this end, a natural option

for addressing objective (i) in a way that facilitates also inclusion of (ii) and (iii) is to represent

fit(x) through the b-spline expansion

fit(x) =
∑p

j=1
βijtgj(x), i = 1, . . . , n, x ∈ X , t = 1, . . . , T, (2)

where [g1(x), . . . , gp(x)] denotes a set of common b-splines bases [e.g., Eilers and Marx, 1996] with

associated coefficients [βi1t, . . . , βipt] that are allowed to vary with countries i = 1, . . . , n and peri-

ods t = 1, . . . , T . Although related representations have been mostly explored in separate analyses
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of single countries in isolation [e.g., Currie et al., 2004, Camarda, 2019, Pavone et al., 2024], the

expansion in (2) provides an effective construction in our multi-country setting which ensures that

fit(x) is a smooth function of age, for every i = 1, . . . , n and t = 1, . . . , T , whose dynamic changes

across periods and local clustering patterns among countries can be regulated by a finite set of

coefficients [βi1t, . . . , βipt], for i = 1, . . . , n and t = 1, . . . , T . As such, objective (i) is addressed by

construction, while (ii)–(iii) can be accomplished by allowing time changes and ties in these coef-

ficients, respectively. In particular, notice that, when βijt = βi′jt, then countries i and i′ display

under (2) similar mortality rates in period t for the age interval associated with basis gj(x).

To formalize this idea, let cijt ∈ {1, . . . ,Kjt} be the cluster membership indicator for country i,

with respect to the j-th basis in period t, and denote with cjt = [c1jt, . . . , cnjt] ∈ {1, . . . ,Kjt}n

the vector comprising the memberships for the n countries, for every j = 1, . . . , p and t = 1, . . . , T ,

where Kjt ≤ n is the total number of clusters at the pair (j, t). Then, ties among the coefficients

β1jt, . . . , βnjt can be readily incorporated, for every j = 1, . . . , p and t = 1, . . . , T , by letting

βijt = β⋆cijtjt, for all i = 1, . . . , n, j = 1, . . . , p, t = 1, . . . , T, (3)

where β⋆cijtjt ∈ R is the value of the j-th b-spline coefficient in period t associated with the cluster

to which country i has been allocated. As such, all countries belonging to the same generic cluster

k (for the j-th spline basis within period t) will display the same value β⋆kjt for the associated coef-

ficient, thereby addressing (iii). Crucially, cjt varies with both j and t, and therefore, any generic

pair countries i and i′ is allowed to cluster locally only for specific ages and periods, consistent with

the original motivations underlying the proposed construction.

In order to complete the proposed Bayesian formulation, we require priors for the model para-

meters in (1)–(3), namely σ2
i , for i = 1, . . . , n, along with cjt and β

⋆
jt = [β⋆1jt, . . . , β

⋆
Kjtjt]

⊺, for each

j = 1, . . . , p, t = 1, . . . , T . Regarding σ2
i , for i = 1, . . . , n, we follow common practice and consider

conditionally-conjugate Inv-Gamma(aσ, bσ) priors for each σ
2
i , independently across i = 1, . . . , n.

Conversely, for cjt and β
⋆
jt we elicit priors that explicitly account for the temporal structure be-

hind the evolution of both cjt and β
⋆
jt with periods t = 1, . . . , T , for each j = 1, . . . , p, thereby

addressing (ii). Focusing first on β⋆jt, this goal is accomplished by assuming independent Gaus-

sian priors for the entries in such a vector, further centered around an higher-level mean function

of time which is assigned a Gaussian process (gp) prior [see, e.g., Williams and Rasmussen, 2006].

More specifically, we let

(β⋆jt | ψjt, δ2j ) ∼ NKjt
(ψjt1Kjt

, δ2j IKjt
), independently for j = 1, . . . , p, t = 1, . . . , T,

(ψj = [ψj1, . . . , ψjT ]
⊺ | ω2

j ) ∼ NT (µj , ω
2
jΣ), independently for j = 1, . . . , p,

(4)

where 1Kjt
and IKjt

denote the Kjt×1 vector of ones and the Kjt×Kjt identity matrix, respect-

ively, whereas µj and ω
2
jΣ are the mean vector and the covariance matrix induced by the gp prior

on the finite time grid t = 1, . . . , T . For Σ we consider, in particular, a squared exponential cor-

relation function [see Williams and Rasmussen, 2006, Section 4] which allows the dependence

between the generic ψjt and ψjt′ to progressively decrease as the distance between the time in-

dexes t and t′ increases. The mean vector µj is instead elicited under a data-driven perspective
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(see Section 4), whereas δ2j and ω2
j are assigned conditionally-conjugate Inv-Gamma(aδ, bδ) and

Inv-Gamma(aω, bω) hyperpriors, respectively, independently for j = 1, . . . , p.

As discussed above, temporal dependence is expected also in the sequence cj1, . . . , cjT of cluster

assignment vectors, for each j = 1, . . . , p. In particular, it is reasonable to assume that the generic

cj,t−1 influences the formation of cjt through a mechanism in which only a subset of the countries

change the corresponding cluster membership when moving from t − 1 to t, whereas the others

preserve it. This Markovian dependence structure implies that pr(cj1, . . . , cjT ) = pr(cj1)pr(cj2 |
cj1) · · ·pr(cjT | cj,T−1), and hence, the mechanism defining pr(cjt | cj,t−1) should be combined

with a careful prior on the initial membership vector cj1 at time t = 1, which induces a flexible

characterization of the joint prior over the entire sequence cj1, . . . , cjT , for each j = 1, . . . , p. A

construction of this type can be found in the temporal random partition (trpm) prior recently

proposed by Page et al. [2022]. Adapting this general construction to our specific context, we let

([cj1, . . . , cjT ] | αj ,Mj) ∼ trpm(αj ,Mj), independently for j = 1, . . . , p, (5)

where αj ∈ [0, 1] is a temporal persistence parameter controlling the transition mechanism behind

pr(cjt | cj,t−1), whereas Mj ∈ R+ regulates the formation of cj1 through pr(cj1), which in turn

influences those of the subsequent vectors cj2, . . . , cjT under the Markovian structure discussed

above. Specializing Page et al. [2022] to our setting, such a formation mechanism for cj1 is as-

sumed to be driven by a Chinese restaurant process (crp) prior with parameter Mj . This prior

belongs to the general Gibbs-type class [e.g., De Blasi et al., 2015] and provides a flexible char-

acterization for the formation of the grouping structures in cj1 driven by a tractable urn scheme.

In particular, let c
(−i)
j1 = [c1j1, . . . , ci−1,j1, ci+1,j1, . . . , cnj1] be the cluster membership vector for

the j-th spline basis at time t = 1, excluding the generic i-th country, and denote with n
(−i)
kj1 and

K
(−i)
j1 the cardinality of cluster k and the total number of non-empty clusters in c

(−i)
j1 , respectively.

Then, under this scheme, the prior on the cluster memberships for country i, given those of the

others, coincides with pr(cij1 = k | c(−i)j1 ) ∝ n
(−i)
kj1 if k is a cluster already occupied by the other

n− 1 countries, and pr(cij1 = k | c(−i)j1 ) ∝Mj if k is a new cluster (i.e., k = K
(−i)
j1 + 1). Besides

illustrating the tractability of this construction, along with the role of the parameter Mj , such

an urn scheme also clarifies that the total number of cluster in cj1 can be learned automatically,

without the need to pre-specify it. This is a remarkable advantage compared to state-of-the-art

cluster-based models for mortality [Hatzopoulos and Haberman, 2013, Léger and Mazzuco, 2021,

Schnürch et al., 2021, Tang et al., 2022, Scognamiglio, 2022, Debon et al., 2023, Dimai, 2025] that

cannot learn the number of clusters automatically, as part of the estimation process.

Under (5), the above prior for cj1 is combined with a similarly-tractable assignment mechanism

regulating the formation of cj2, cj3, . . . , cjT via the generic conditional law pr(cjt | cj,t−1). This

is accomplished by sampling a binary latent indicator variable γijt ∼ Bern(αj) that controls,

for each country i = 1, . . . , n, whether such country belongs to the same cluster when moving

from cj,t−1 to cjt (i.e., γijt = 1), or can possibly change its current allocation (i.e., γijt =

0). Given γjt = [γ1jt, . . . , γnjt] and cj,t−1, the allocation vector cjt at time t is sampled from the

set of allocations compatible with cj,t−1, under γjt, namely all those allocation vectors yielding

a partition of the n countries that can be obtained from the one encoded within cj,t−1 by
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reallocating only those countries for which γijt = 0. In this sampling mechanism, each allocation

vector within the compatible set is assigned a probability proportional to the one defined by the

prior at time t = 1. Besides its simplicity, this construction provides an effective and flexible

representation whose temporal persistence is directly regulated by αj (the higher αj is, the more

similar cj,t−1 and cjt are). Inheriting the theory by Page et al. [2022] within our specific setting,

this construction further ensures that the marginals for cj2, cj3, . . . , cjT have the same crp prior

as the one assumed above for cj1, thereby yielding a temporal construction which preserves, for

all its marginals, all the advantages of the crp formulation discussed above for cj1.

To conclude our Bayesian formulation, we select independent Beta(aα, bα) and Gamma(aM , bM )

hyperpriors for the quantities αj andMj in (5), respectively, for j = 1, . . . , p. The Beta(aα, bα) hy-

perprior is considered also in Page et al. [2022], whereas the Gamma(aM , bM ) for the crp concen-

tration parameters, although not present in Page et al. [2022], is motivated by recent theoretical

results in Ascolani et al. [2023] on the consistency properties of crp constructions.

Section 3 clarifies that the above Bayesian formulation is also amenable to tractable posterior

computation and inference leveraging a carefully-designed Gibbs-sampling algorithm.

3. Bayesian Computation and Inference

Posterior inference for the Bayesian model in Section 2 is conducted via Monte Carlo leveraging

the draws of a carefully-designed Gibbs sampler targeting the posterior distribution of the model

parameters given the observed mortality rates. Section 3.1 derives in detail such a Gibbs sampler,

while Section 3.2 illustrates how the resulting posterior samples are leveraged to perform Monte

Carlo inference on the local clustering structures among countries and the corresponding mortality

patterns.

3.1 Gibbs sampler

The proposed Gibbs sampler iterates sequentially between two main steps. First, the temporal

cluster allocations are sampled, along with the trpm hyperparameters in (5), from the correspond-

ing full-conditionals by adapting the algorithm of Page et al. [2022, see Section B, Supplementary

Materials] to our b-splines construction, and the results in Escobar and West [1995] for the crp

hyperparameters Mj , j = 1, . . . , p. Second, conditionally on the group allocations, the cluster-

specific b-splines coefficients in (4) and the corresponding hyperparameters are updated leveraging

Gaussian and inverse-Gamma conjugacy.

In order to update the temporal grouping structures in cj1, . . . , cjT , for j = 1, . . . , p, along with

the parameters of the associated trpm prior, let us first recall that the generic allocation vectors

cj,t−1 and cjt are compatible, with respect to γjt, if the partition of the n countries encoded

within cjt may be derived from the one associated with cj,t−1 by reallocating only those countries

for which γijt = 0. Given cj,t−1 and γjt, define with C(cj,t−1,γjt) the set comprising all partitions

induced by cjt that are compatible with cj,t−1, under γjt, and let Γjt = {i = 1, . . . , n : γijt = 1}
be the set of countries whose group allocation does not change from t−1 to t. Furthermore, let us

denote with c
Γjt

jt the partition induced by cjt, but considering only those countries with indexes



3.1 3.1 Gibbs sampler 9

in Γjt. Then, leveraging the results in Page et al. [2022], the full-conditional distribution for the

latent indicators γijt is a Bernoulli variable with probabilities

pr(γijt = 1 | −) =
αj

αj + (1− αj)pr(c
Γ

(+i)
jt

jt |Mj)/pr(c
Γ

(−i)
jt

jt |Mj)

I[c
Γ

(+i)
jt

j,t−1 = c

Γ
(+i)
jt

jt ], (6)

independently for each i = 1, . . . , n, j = 1, . . . , p and t = 1, . . . , T , where I[·] denotes the indicator
function, while Γ

(−i)
jt = Γjt \ {i} and Γ

(+i)
jt = Γ

(−i)
jt ∪ {i}.

Note that in (6), the ratio pr(c
Γ

(+i)
jt

jt |Mj)/pr(c
Γ

(−i)
jt

jt |Mj) can be computed in closed-form lever-

aging the results in Page et al. [2022] under the urn scheme of the crp prior discussed in Section 2.

This is also a key to update the allocations cijt of those countries for which γijt = 0; if the sampled

γijt is 1, then cijt is kept fixed at the allocation drawn for i at the pair (j, t− 1). To this end, let

c
(−i)
jt be the vector of cluster allocations after removing the entry cijt, and denote with c

(cijt=k)
jt

the membership vector [c1jt, . . . , cijt = k, . . . , cnjt]. Furthermore, let K
(−i)
jt be the total number

of unique clusters in c
(−i)
jt and define with r

(j)
ixt = logmixt−

∑
j′ ̸=j β

⋆
cij′tj

′tgj′(x) the partial resid-

uals under model (1)–(3) without considering the j-th spline. Then, leveraging the Bayes rule and

the crp urn scheme, we have that the full-conditional distribution for those cijt having γijt = 0

is a categorical variable with probabilities, for each k = 1, . . . ,K
(−i)
jt + 1, given by

pr(cijt = k | −) ∝

pr(cijt = k | c(−i)jt ,Mj)I[cj,t+1 ∈ C(c(cijt=k)jt ,γj,t+1)]
∏

x∈X
ϕ(r

(j)
ixt − β⋆kjtgj(x);σ

2
i ),

(7)

for every i = 1, . . . , n, j = 1, . . . , p and t = 1, . . . , T , where ϕ(r
(j)
ixt − β⋆kjtgj(x);σ

2
i ) is the density,

evaluated at r
(j)
ixt − β⋆kjtgj(x), of the zero-mean Gaussian distribution with variance σ2

i , whereas,

as discussed in Section 2, pr(cijt = k | c(−i)jt ,Mj) can expressed under the crp urn scheme as

pr(cijt = k | c(−i)jt ,Mj) ∝

n
(−i)
kjt k = 1, . . . ,K

(−i)
jt ,

Mj k = K
(−i)
jt + 1,

where n
(−i)
kjt denotes the size of the k-th cluster after removing unit i.

Given the samples of cjt and γjt, for all t = 1, . . . T , the trpm hyparameters αj are updated

from the full-conditional Beta distributions

(αj | −) ∼ Beta
(
aα +

∑n

i=1

∑T

t=1
γijt, bα + nT −

∑n

i=1

∑T

t=1
γijt

)
, (8)

independently for j = 1, . . . , p, whereas the crp concentration parameters Mj , j = 1, . . . , p, are

updated following the data-augmentation scheme described in Escobar and West [1995].

Once the group membership vectors cj1, . . . , cjT have been updated for each j = 1, . . . , p, it is

possible to sample the cluster-specific coefficients in β⋆jt, for j = 1, . . . , p and t = 1, . . . , T , along

with the corresponding time-varying means in ψj , for j = 1, . . . , p. Combining prior (4) with the

model (1)–(3), this can be accomplished by leveraging directly Gaussian-Gaussian conjugacy. In
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particular, the full-conditional distribution for the generic β⋆kjt is

(β⋆kjt | −) ∼ N(ω−1
β⋆
kjt
ηβ⋆

kjt
, ω−1
β⋆
kjt

), (9)

independently across every k = 1, . . . ,Kjt, j = 1, . . . , p and t = 1, . . . , T , where ωβ⋆
kjt

= 1/δ2j +∑
x∈X g2j (x)

∑
i:cijt=k

(1/σ2
i ), while ηβ⋆

kjt
= (ψjt/δ

2
j )+

∑
i:cijt=k

(1/σ2
i )

∑
x∈X r

(j)
ixtgj(x). Similarly,

the full-conditional for each vector ψj is

(ψj | −) ∼ NT (Ω
−1
ψj
ηψj

,Ω−1
ψj

), (10)

for j = 1, . . . , p, with Ωψj
= ω−2

j Σ−1 + δ−2
j diag(Kj1, . . . ,KjT ) and ηψj

= ω−2
j Σ−1µj + δ−2

j β̄j ,

where β̄j is a vector of dimension T × 1 having generic t–th entry
∑Kjt

k=1 β
⋆
kjt.

To conclude the Gibbs-sampling routine it remains to update the variance parameters σ2
i , i =

1, . . . , n in (1), along with δ2j and ω2
j , j = 1, . . . , p, entering the priors in (4). By conditioning on

the quantities sampled in (7) and (9)–(10), the updates for these variance parameters follow dir-

ectly from inverse-Gamma conjugacy properties, thereby obtaining

(σ2
i | −) ∼ Inv-Gamma

(
aσ +XT/2, bσ + (1/2)

∑
x∈X

∑T

t=1
[logmixt − fit(x)]

2
)
. (11)

for every i = 1, . . . , n, with fit(x) defined as in (2)–(3), and

(δ2j | −) ∼ Inv-Gamma
(
aδ +

∑T

t=1
Kjt/2, bδ + (1/2)

∑T

t=1

∑Kjt

k=1
(β⋆kjt − ψjt)

2
)
,

(ω2
j | −) ∼ Inv-Gamma

(
aω + T/2, bω + (ψj − µj)⊤Σ−1(ψj − µj)/2

)
,

(12)

for every j = 1, . . . , p.

3.2 Monte Carlo inference

Leveraging the samples produced by the Gibbs routine outlined in Section 3.1 posterior inference

on the quantities of interest proceeds via Monte Carlo. As discussed in Sections 1–2, within our

context a primary focus is on inferring grouping structures among countries induced by similarities

among the corresponding mortality rates, and how these group structures vary locally across ages

and periods. This information is contained in the posterior samples of the allocation vectors cjt

for j = 1, . . . , p and t = 1, . . . , T , which we summarize through the n× n posterior co-clustering

matrices P̂jt, j = 1, . . . , p, t = 1, . . . , T , whose generic element P̂jt[i,i′] is defined as the relative

proportion of Gibbs samples in which countries i and i′ have the same group allocation, at the

pair (j, t). This provides an estimate of the posterior probabilities of co-clustering that is useful

for quantifying uncertainty in cjt for j = 1, . . . , p, t = 1, . . . , T , beyond single point estimates. As

such, these matrices will be object of study in the mortality data application in Section 5.

When a single point estimate ĉjt of cjt is of interest for each j = 1, . . . , p and t = 1, . . . , T , the

above posterior co-clustering matrices can be summarized under the decision-theoretic framework
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of Wade and Ghahramani [2018] to obtain the estimate

ĉjt = argminc′
jt
Ecjt [VI(cjt, c

′
jt) | logm], j = 1, . . . , p, t = 1, . . . , T,

where logm is the array of log-mortality rates observed for the n countries across all ages and

periods, whereas VI is the variation of information distance [Meilă, 2007], namely a metric meas-

uring the dissimilarity among two generic allocation vectors cjt and c′jt based on the associated

individual and joint entropies. In practice, the above minimization problem is solved, for each j =

1, . . . , p and t = 1, . . . , T , via R package mcclust.ext [Wade and Ghahramani, 2018] leveraging,

as input, the corresponding posterior co-clustering matrices P̂jt, j = 1, . . . , p, t = 1, . . . , T .

Besides the grouping structures encoded in cj1, . . . , cjT , for j = 1, . . . , p, it is also of interest to

study the trajectories βij1, . . . , βijT of the b-splines coefficients. Recalling (2), these trajectories

characterize the temporal evolution of the mortality levels for country i at the age interval asso-

ciated with the j–th spline. Posterior samples for these coefficients can be derived directly from

those for cjt and β⋆jt, after noticing that, under (3), βijt = β∗
cijtjt, for every i = 1, . . . , n, j =

1, . . . , p and t = 1, . . . , T . As such, point estimates for the dynamic country-specific b-spline coef-

ficients can be derived via Monte Carlo by computing the average of the resulting samples for each

βijt, i = 1, . . . , n, j = 1, . . . , p and t = 1, . . . , T .

4. Simulation Study

Before employing the proposed model in the motivating mortality data application, we first assess

its performance in recovering the true data-generative structures in a simulation study. Recalling

Sections 1–3, the overarching focus is on quantifying to what extent the proposed model can learn

accurately realistic grouping structures that vary locally, along with the associated cluster-specific

parameters, in different combinations of ages and periods.

Consistent with the above goal, we simulate synthetic log-mortality rates, under the model out-

lined in (1)–(3) focusing on n = 5 countries across T = 10 periods and for ages X = {0, 1, . . . , 100}.
More specifically, logmixt are simulated as in (1) with σi = σ = 0.05, for i = 1, . . . , 5, and fit(x)

defined through (2)–(3) considering p = 6 quadratic b-splines whose cluster-specific coefficients

are generated via (4), setting δj = 0.05 for j ̸= 5, δ5 = 0.1, and letting ψj , j = 1, . . . , p corres-

pond to parallel decreasing lines with slope −0.02. To assess the ability of the proposed model

in inferring complex local group structures among countries, we do not produce cj1, . . . , cj10, for

j = 1, . . . , 6 from the assumed prior. Rather, we set the group allocations manually as in Figure 2,

in order to explore a wide spectrum of time-varying local clustering patterns. For example, for the

age classes associated with the spline bases 3 (top-right panel) and 4 (bottom-left panel) the syn-

thetic countries are grouped into stable clusters across time, albeit with differing co-clustering

patterns. Conversely the remaining spline bases exhibit more complex dynamic clustering patterns

(see, e.g., spline basis 6 where the synthetic countries often change cluster membership).

Leveraging the above simulated data, we perform Bayesian inference under the model proposed

in Section 2, setting diffuse hyperparameters aσ = bσ = 10−3, aδ = bδ = aω = bω = 10−3, aM =

2 ·10−3, bM = 10−3 and aα = 1, bα = 1. Consistent with standard practice in Gaussian processes
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Figure 2: Cluster assignments in the simulation study. Colors and numbers represent true cluster memberships.

literature [see, e.g., Williams and Rasmussen, 2006], the entries of Σ in (4) are defined through a

squared-exponential kernel with length scale 1.5, i.e. Σ[t,t′] = exp[−0.5(t− t′)2/(1.5)2], for every

(t, t′). Finally, to achieve an improved calibration of the proposed model, the mean vectors µj =

[µj1, . . . , µj10]
⊺, j = 1, . . . , 6, in (4) are defined in a data-driven manner. This is accomplished by

first obtaining, separately for every t = 1, . . . , 10, an ols estimate of the splines coefficients under

model (1) applied to data logmixt, i = 1, . . . , 5, X = {0, 1, . . . , 100}, with fix(t) =
∑6
j=1 βjtgj(x).

For each j = 1, . . . , 6, the resulting estimates β̂j1, . . . , β̂j10 are subsequently smoothed via loess

to obtain the desired data-driven specification for the entries µj1, . . . , µj10 of µj . All these settings

and hyperparameter choices proved robust also the in the mortality data application in Section 5,

and moderate changes in such quantities did not substantially affect the final conclusions and the

performance in the simulation.

Under the above settings, posterior inference for the proposed model proceeds via Monte Carlo

as outlined in Section 3.2, leveraging the samples produced by the Gibbs routine derived within

Section 3.1. Such a routine is run for 20,000 iterations, discarding the first 10,000 as a conservative

burn-in. Traceplots and autocorrelation plots indicate satisfactory mixing of the chains. In fact,

in this simulation study we observe convergence much before the burn-in employed. Nonetheless,

we opted for a more conservative setting that can be considered as a default in general contexts,

including in the motivating mortality data application in Section 5.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Spline 1 (j = 1) 0.991 0.998 0.999 0.995 0.976 1.000 1.000 1.000 1.000 1.000

Spline 2 (j = 2) 0.995 0.999 0.999 1.000 0.998 0.991 0.999 1.000 1.000 0.995

Spline 3 (j = 3) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Spline 4 (j = 4) 0.991 1.000 0.999 1.000 0.997 1.000 1.000 0.999 0.987 0.990

Spline 5 (j = 5) 0.996 1.000 1.000 1.000 0.994 0.997 1.000 0.999 0.999 0.993

Spline 6 (j = 6) 0.914 0.897 0.968 0.969 0.982 0.979 0.983 0.983 0.989 0.990

Table 1. Simulation study. Posterior means of co-clustering accuracies for each combination (j, t).



13

Country 4 Country 5

Country 1 Country 2 Country 3

Spline 1

Spline 2

Spline 3

Spline 4

Spline 5

Spline 6

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

−6

−4

−2

0

−6

−4

−2

−5

−4

−3

−2

−1

0

−6

−4

−2

0

−6

−4

−2

0

Time

C
oe

ffi
ci

en
ts

Figure 3: Simulation study. Posterior means of βij1, . . . , βij10 (lines) and true values (points) for each country i =

1, . . . , 5 (panels) and basis function gj(x), j = 1, . . . , 6 (colors).

Consistent with our overarching focus, we first assess in Table 1 to what extent the proposed

model is able to learn the true clustering structures displayed in Figure 2 among the 5 synthetic

countries. To provide a comprehensive assessment of the clustering accuracy achieved by the pos-

terior for cj1, . . . , cj10, j = 1, . . . , 6, beyond the one obtained under a single point estimate, we

compute, for each Gibbs sample of cjt, t = 1, . . . , 10, j = 1, . . . , 6, the percentage of pairs of coun-

tries that are correctly co-clustered. The posterior means of these percentages over the 10,000

retained samples is reported in Table 1, and confirm the excellent performance of the proposed

model in recovering the co-clustering patterns induced by the true group structures within Fig-

ure 2. In particular, the accuracy measures are above 0.975 for all spline bases and time points,

except for 6–th one where we observe a slight performance deterioration. This result is expected

since such a basis presents the most complex clustering patterns, with frequent changes of group

memberships for all countries. Nonetheless, even in this highly challenging regime, we still observe

remarkable performance with all accuracy measures across time points above 0.89.

As shown within Figure 3, the above remarkable performance in learning local clustering struc-

tures directly translates into highly accurate point estimates for the country-specific coefficient

trajectories βij1 = β⋆cij1j1, . . . , βij10 = β⋆cij10j10, i = 1, . . . , 5, j = 1, . . . , 6. These point estimates

are obtained as detailed in Section 3.2, and compared with the associated true values within Fig-

ure 3. Results confirm the ability of the model to characterize the underlying trajectories of each

spline coefficient accurately, even for complex underlying temporal dynamics. Under (1)–(3), this

implies effective learning of the data-generative mechanism for the synthetic log-mortality rates.

5. Local Clustering of Age-Period Mortality Surfaces for 14 Countries

We conclude by showcasing the performance of the proposed model in learning local clustering

structures across ages and periods induced by the log-mortality rates of 14 countries (Australia,

Belgium, Canada, Switzerland, Denmark, Spain, Finland, France, Italy, the Netherlands, Norway,
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0 1 4 8 12 17 22 27 32 38 46 55 64 72 77 82 87 92 96 98

Figure 4: Graphical representation of the selected b-splines bases g1(x), . . . , g20(x). The number associated to each

spline gj(x) denotes the age at which such a spline takes its maximum value.

Sweden, the United Kingdom and the United States). The original data logmixt are retrieved

from the Human Mortality Database [Human Mortality Database, 2024] for ages from 0 until 98

years-old, over a time horizon of 88 years (1933− 2020).

In applying the proposed model to the above data we follow standard practice in multi-country

studies [e.g., Li and Lee, 2005, Aliverti et al., 2022] by considering separate analyses for male and

female sub-populations. Posterior inference proceeds under the same hyperparameters and Gibbs

settings as those considered for the simulation studies in Section 4, except for the choice of the b-

spline bases that are set as in Figure 4 to achieve a more realistic characterization of the observed

age patterns of mortality. This choice allows increased flexibility in those age ranges where larger

local variations are expected (i.e., infant and senescent groups), and has proved effective also in

recent single-country analyses [e.g., Pavone et al., 2024], thereby motivating its use also in the

newly-developed multi-country model. As in the simulations studies, the traceplots for the quant-

ities of interest and the convergence diagnostics did not provide evidence against convergence.

Section 5.1 summarizes the results of posterior inference under the proposed model, whereas Sec-

tion 5.2 highlights previously-unexplored local clustering structures with a specific focus on the

United States. Finally, Section 5.3 explores possible associations between the novel co-clustering

patterns inferred by the proposed model and relevant socio-economic variables, including the gross

domestic product (gdp) and health expenses.

5.1 Results

Figure 5 shows the evolution of posterior means for the number of clusters inferred by the proposed

model across the age intervals associated with the 20 spline bases within Figure 4, over the tem-

poral window analyzed. Such a quantity is generally stable for both infant mortality (age 0) and

adult/elder mortality (from age 60 to 90). Instead, a considerable variability in the number of

clusters is observed for children and adolescents (from age 1 to 25) and late mortality (from age

91), with different patterns. Besides supporting the need of allowing the group structures among

countries to vary locally with ages and periods, these trends can be interpreted as a measure of

variability in mortality rates across countries, with larger number of groups corresponding to age

intervals where the different countries display higher dissimilarities over periods. Consistent with

this interpretation, the results in Figure 5 suggest that senescent mortality is characterized by an
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Figure 5: Time trajectories for the posterior mean of the number of clusters at the age intervals associated with the
20 selected b-spline bases.

increasing level of similarity among countries over the recent years, whereas child mortality ex-

hibits an opposite trend after the early 1960s, indicating a divergence among countries that might

have been driven by social phenomena such as the baby boom. Overall, males and females are

characterized by similar patterns, with few notable exceptions. The number of clusters for elders

(ages 91 − 98) converges to few groups for both sub-populations, although males are generally

characterized by higher dissimilarities among countries since the first period under investigation.

It is also interesting to notice how the mortality of young and adult males (age 16−40) is affected

by World War II during the 1940s, and reaches a plateau only after the peak associated with the

military services.

The ability of the proposed model to effectively capture local clustering patterns is illustrated

in Figure 6, where the observed infant log-mortality rates in Italy, Sweden, the uk and the usa

are compared with the corresponding probabilities of co-clustering estimated from the samples

of the Gibbs algorithm presented in Section 3.1. This specialized analysis is useful to further

illustrate the main advantages of the newly-proposed approach and its implications for the global

characterization of mortality rates. In particular, the right panel of Figure 6 indicates a fluctuating

probability of co-clustering between the uk and the usa (bottom row), with larger values before

1940, in the early 1950s, and more recently from 1970 to 1980, in agreement with the observed

trends of mortality rates reported in the left panel. Evidence of co-clustering is observed also for

Italy with both the uk and the usa around the 1980s. In contrast, Sweden is characterized by a

peculiar and separate trajectory, that overlaps with Italy only in recent years (top row).

To fully explore the evolution of the local co-clustering patterns, beyond the above specialized

analysis, Figures 7a and 7b display the estimated co-clustering probabilities across all pairs of

countries, for males and females respectively. Both figures illustrate the co-clustering probabilities
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Figure 6: Observed male infant log-mortality rates for Italy (ita), Sweden (swe), the United Kingdom (uk) and the

United States (usa) (left), and estimated dynamic co-clustering probabilities for the corresponding pairs (right).

for every b-spline basis (corresponding to a different age interval) through a matrix with rows de-

noting all pairs of countries and columns referring to calendar years. Colors range from blue to

red as the estimated co-clustering probabilities vary from 0 to 1. The results in Figures 7a and 7b

indicate, in general, an increasing overlap among countries over periods in terms of the associated

age-specific log-mortality rates. Interestingly, evidence of increasing co-clustering is progressively

more present both as time advances and as the population ages, demonstrating a dual-directional

reinforcement of these similarities. For instance, in the eldest age interval (96–98) of the male sub-

population, the proportion of country pairs with a high probability of co-clustering has steadily

risen in recent years, forming a distinct block of countries with large probabilities of co-clustering

in the bottom-right panel of Figure 7a. Such compression is stronger for older ages, with young

age classes demonstrating smaller probabilities of co-clustering than elder ones. Furthermore, this

phenomenon finds empirical evidence in both the male (Figure 7a) and female (Figure 7b) sub-

populations, thereby supporting previous findings on demographic convergence [e.g., Vaupel et al.,

2011, Wilson, 2011].

Focusing on child mortality, the younger age classes (from age 1 to 19) showcase a neat temporal

pattern, with most of the co-clustering concentrated between the late 1950s and the early 1980s.

This behavior is coherent with the evolution of the number of clusters in Figure 5, and suggests

that the countries under investigation have been characterized by different levels of child mortality

until World War II, followed by the rapid improvement of mortality rates in the early 1960s that

created few common clusters with similar mortality patterns. After the 1980s, the co-clustering

structures become more irregular and countries deviate to more individual trends. This finding

is worth future investigations.

The co-clustering patterns among countries for adult mortality are reported within the third row

of Figure 7a and Figure 7b, and generally show a common diagonal structure with some groups
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Figure 7: Evolution of the estimated co-clustering probabilities for country pairs (rows) and years (columns), over

all age intervals (panels). Colors correspond to the estimated probabilities, and range from blue (low) to red (high).

of European countries experiencing important changes of cluster membership around the 1980s.

This phenomenon can be more clearly appreciated, for the male sub-population, in the left panel

of Figure 8, that reports the estimates of the dynamic spline coefficient associated with the ages
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Figure 8: Estimates of β14 and β19 (age classes 61–79 and 91–97) in the male population.

61−79. Such estimates show how the Netherlands and Denmark are characterized by low mortal-

ity rates until the 1970s, while Belgium, Finland and the uk experienced some of the highest rates

during that period. Later on, mortality drops rapidly for most countries, whereas the Netherlands

and Denmark experience increments that makes these countries co-cluster with higher mortality

ones. Structural changes in cross-country relations characterize this period. The potential impact

of such changes is visible in the right panel of Figure 8, which displays the evolution of the spline

coefficient associated with the age interval 91−97, and illustrates that after 1970s mortality levels

of elder ages collapse into fewer clusters with stable trends for several years.

To further study the similarity between the group structures among countries inferred for the

male and female log-mortality rates, we have also computed the normalized variation of inform-

ation distance (nvi) [e.g., Wade and Ghahramani, 2018] among the group membership vectors

estimated for these two sub-populations. Overall, the similarity between the partitions is more

evident for the two youngest age classes (0 and 1−4), with values of the nvi below 0.44 and 0.58,

respectively, throughout the entire time window. For example, female infant mortality in 2020

is divided into four groups. The first comprises the usa, the second Canada, the third Central

European countries (Belgium, Switzerland, Denmark, France, the Netherlands and the uk) and

Australia, and the fourth encodes both Mediterranean Europe (Italy, Spain) and Scandinavian

countries (Finland, Norway, Sweden). The corresponding partition for the male sub-population

consists, instead, of five groups, with the same first three as for the female sub-population, and

the remaining two obtained by splitting Mediterranean Europe and Scandinavia into two separ-

ate clusters. More remarkable differences between male and female sub-populations are observed

among middle-aged individuals, with nvi values above 0.5 after the 1960s. Interestingly, for the

elderly population, a trend of increasing similarity started in the late 1980s, mirroring the pat-

terns observed for young ages. Overall, these trends reflect a progressive convergence of mortality

patterns across countries [Vaupel et al., 2011] for both males and females.
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5.2 A specialized focus on the United States

We devote here special attention to the analysis of the co-clustering probabilities between the usa

and the other countries, estimated under the proposed model. This specialized focus is motivated

by the fact that the usa has exhibited peculiar patterns in recent years, with rising mortality rates

among certain demographic groups and a decline of life expectancy [see, e.g., Bergeron-Boucher

et al., 2020, Case and Deaton, 2021, Glei, 2022]. This phenomenon has been extensively studied

in the literature, with a general consensus attributing these unexpected mortality increments to

factors such as persistent disparities in healthcare access, increasing suicide rates, and more re-

cently, to the opioid epidemic [see, e.g., Woolf and Schoomaker, 2019]. To complement and extend

these findings, it is therefore particularly interesting to study how the usa co-clusters with the

other countries under investigation in terms of mortality rates.

Consistent with the above goal, Figure 9a displays the dynamic probabilities of co-clustering

among the usa and the other countries at selected age intervals for the male sub-population, es-

timated under the proposed model. The results in Figure 9a point toward a persistent co-clustering

among the usa and Finland. This finding indicates strong similarities in terms of premature male

mortality and can be attributed to suicide incidence and cardiovascular diseases. Indeed, although

Scandinavian countries provide universal and publicly funded welfare systems for all citizens, sig-

nificant disparities still persist across the socio-economic spectrum due to the so-called “Nordic

Paradox” [see, e.g., Mackenbach, 2017, Højstrup et al., 2023]. As such, Figure 9a suggests that the

“Death of Despair” phenomenon in the usa [e.g., Case and Deaton, 2021, Glei, 2022] might have

interesting similarities with the “Nordic Paradox”.

Age 21−34 Age 26−39 Age 31−49 Age 36−59

1940 1960 1980 2000 2020 1940 1960 1980 2000 2020 1940 1960 1980 2000 2020 1940 1960 1980 2000 2020

(a) Male population

Age 31−49 Age 36−59 Age 41−69 Age 51−74

1940 1960 1980 2000 2020 1940 1960 1980 2000 2020 1940 1960 1980 2000 2020 1940 1960 1980 2000 2020

(b) Female population

Figure 9: Estimated dynamic co-clustering probabilities between the usa and the other countries, for selected age in-
tervals. Colors range from light to dark as the probability varies from low to high.
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Focusing on the female sub-population, Figure 9b provides evidence of a relatively-persistent

co-clustering among the usa and Denmark females at adult ages, varying across time and with age

intervals. Such a peculiar result should be further investigated, since the interwar generation of

Danish females represents a relevant demographic group that comprises cohorts who experienced a

peculiar stagnation in life expectancy, resulting in a divergent trajectory compared to other Scand-

inavian countries [Lindahl-Jacobsen et al., 2016]. As such, recent improvements in life expectancy

can be linked to a cohort effect associated with this group that is visible also from the co-clustering

patterns in Figure 9b. Interestingly, Belgian females join these clusters in specific age groups and

time periods; a similar trend can be observed for uk at age 41−69. Such patterns might be related

to higher proportion of diseases of the circulatory system for Belgian females [Bergeron-Boucher

et al., 2020] and to general declines in life expectancy in the uk [Ho and Hendi, 2018].

5.3 Associations among local clustering structures and socio-economic indicators

The results in Sections 5.1–5.2 showcase relevant co-clustering structures among countries. These

structures display convergence phenomena over periods for specific age classes [e.g., Oeppen and

Vaupel, 2002], along with evidence of growing disparities for other ages. Available studies suggest

that such patterns are driven by socio-economic factors such as quality of healthcare, education,

and life standards [Marmot, 2005, Vallin and Meslé, 2004, European Commission and Executive

Agency for Health and Consumers, 2013].

To provide additional empirical support to the above studies, we conclude our analysis by as-

sessing to what extent the group structures inferred by the proposed model are associated with

relevant socio-economic indicators, covering, in particular, the per-capita gross domestic product

(gdp) in usd, unemployment rate, health expenditure (as the percentage of a country gdp), nu-

trition and child vaccination rates (against diphtheria, tetanus, pertussis); refer to OECD [2024]

for more details. Data on these indicators are available, for all countries, across varying time peri-

ods. The earliest data for the gdp date back to 1970, whereas child vaccination rates and health

spending are available starting from 1990. Finally, data on nutrition quality and unemployment

rate start from 2010. Following standard practice, the association between these socio-economic

indicators and the clustering structures among countries inferred by the proposed model is evalu-

ated using the η2 ∈ [0, 1] coefficient, which quantifies the variability of each indicator between the

inferred clusters with respect to the total variability of such an indicator. Values of the η2 close

to 1 imply that the group structures among countries learned on the basis of similarities in the

associated mortality rates are also explicative of the variability for the indicator under analysis,

thereby suggesting possible associations. Notice that this measure does not inform on the direc-

tion of such an association, nor on possible causal interpretations. Nonetheless, it offers a sensible

perspective for prioritizing specific indicators within explanatory studies on the socio-economic

determinants of multi-country mortality patterns.

Figure 10 reports, for both the female and male sub-population, the posterior means of the η2

coefficients in matrix form. Rows correspond to the age intervals j = 1, . . . , p associated with the

different spline bases, columns to calendar years t = 1, . . . , T , and panels to socio-economic indic-

ators q = 1, . . . , Q. To obtain these posterior means we first compute the η2 between each posterior
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Figure 10: Posterior mean of η2 coefficients between selected socio-economic indicators and the inferred mortality-
based clusterings in the female and male sub-populations.

sample of cjt = [c1jt, . . . , cnjt] and the vector w
(q)
t = [w

(q)
1t , . . . , w

(q)
nt ], with generic element w

(q)
it

denoting the value of the socio-economic indicator q, for country i in period t. This produces pos-

terior samples of the η2 for each age interval j = 1, . . . , p, period t = 1, . . . , T and socio-economic

indicator q = 1, . . . , Q. Averaging over these samples yields the posterior means in the matrices

in Figure 10, which highlight a general concordance in the η2 coefficients for the female and male

sub-populations with non-trivial associations between the inferred clusters and the socio-economic

indicators analyzed, particularly at young ages, and with different patterns across calendar years.

For example, nutrition, gdp, health spending and unemployment rate appear to be associated

with mortality clusters through a lower-diagonal cohort structure spanning a large spectrum

of age classes, from childhood until young-adults and adults. This suggests that past incentives

have had a lasting impact on specific cohorts, ultimately improving the lifespan of individuals who

directly benefited from these initiatives. Not surprisingly, child vaccination rates and nutrition

are generally less associated with clusters observed at age 0. In fact, such interventions cannot

prevent neonatal and infant mortality, which are caused by specific factors [such as, birth defects,

sudden infant death syndrome or accidents; see MacDorman et al., 2013, Eberstein et al., 1990].

Instead, these indicators show a stronger association with the inferred clusters from age 1 until late

adolescence, consistent with the protective effects of vaccination and proper nutrition in such ages.

6. Conclusions and Future Research Directions

Available statistical models for mortality data are either designed for analyzing single countries

in isolation or for inferring global group structures among multiple countries with respect to the

entire age-period mortality surface. This perspective prevents from unveiling more nuanced simil-

arity patterns that are observed in practice over specific combinations of ages and calendar years,
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thereby limiting the possibility to learn and quantify relevant demographic phenomena localized

at specific age classes and periods.

In this article, we overcome the above limitations through a novel multi-country model that char-

acterizes the age pattern of mortality via a flexible b-spline expansion, and incorporates both tem-

poral and age-specific clustering structures by allowing the coefficients of the b-spline bases to

change in time via separate temporal random partition priors with cluster-specific Gaussian pro-

cesses regulating the dynamic evolution of such coefficients. The resulting Bayesian formulation

is amenable to tractable posterior inference via a Gibbs-sampling algorithm that facilitates inter-

pretable reconstruction of group structures among countries, varying locally with both ages and

periods. The unique advantages of the newly-proposed model are illustrated in simulation studies

and in an application to mortality data for 14 oecd countries, where our formulation unveils fun-

damental local clustering structures, including unexplored ones that motivate future research in

the area. For example, the in-depth analysis of the usa clustering patterns in Section 5.2 reveals

peculiar similarities with specific Scandinavian countries for adult populations. In particular,

the persistent similarity with Danish female log-mortality rates motivates further investigation,

as this sub-population is known to have exhibited peculiar mortality behavior due to significant

smoking prevalence during World War II. Furthermore, the inferred associations between the local

clustering patterns reconstructed by the proposed model and relevant socio-economic indicators

(see Section 5.3), highlight peculiar cohort effects that are worth future analyses.

Future research includes applying the proposed model to a broader range of countries, while re-

fining the analysis on the association among the groups structures induced by mortality patterns

and central socio-economic indicators. Both perspectives require overcoming challenges related to

the availability of historical data. In fact, the 14 countries considered in this article are the only

ones providing mortality rates that date back to our study period; analyzing more countries would

imply constraining the analysis to narrower time windows. Improving inference on the associ-

ations with socio-economic indicators would require, instead, including such information directly

within the proposed model. A possibile direction for addressing this goal is to combine the trpm

prior with a reinforcement mechanism favoring the formation of local clusters that are homogen-

eous also with respect to the associated socio-economic indicators. This could be accomplished by

extending the combination among product partition models with covariates [Müller et al., 2011]

and trpm priors proposed in Page et al. [2022] to the case of dynamic covariates.

Finally, let us emphasize that although our model is motivated by demographic applications,

the constructions and results in Sections 2–3 have broader methodological impact, and can be ap-

plied whenever interest lies in the detection of localized overlaps among surfaces associated with

different populations. To our knowledge, methodological results in these directions are limited.
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