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Abstract. Discovering latent dependence structures over the nodes of a 
dynamic network is a difficult challenge that is of increasing importance 
in many applied fields. Our interest is motivated by a demographic anal-
ysis of the complex interaction between causes of death in the Italian 
population observed on a fine age grid. To unveil non-trivial grouping 
structures between causes of death, we rely on a simplified version of 
a recently proposed stochastic block model for dynamic networks [ 4], 
which is able to learn node partitions having common connectivity pat-
terns. To flexibly account for the time evolution of the node grouping 
structure, such a model relies on a dynamic random partition process, 
which permits to learn sequences of partitions with a high and evolving 
level of persistence over time. 
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1 Introduction 

Network analysis has become a central tool in statistics and machine learning 
for discovering non-trivial dependence structures in complex systems character-
ized by the interaction of several units, called nodes, whose relationships can 
be described as the edges of a graph. Relevant applications include genomics, 
epidemiology, and social sciences. In particular, a key challenge in network anal-
ysis is community detection, which uncovers structural grouping patterns within 
interconnected data. 

This study is driven by the demographic challenge of analyzing the age-
dependent evolution of the interactions among causes of death in the Italian pop-
ulation. Understanding the distribution, evolution, and structural dependence of 
mortality causes is crucial for demographic and public health planning. While 
previous studies have ranked the leading causes of death and examined their 
trends, they often overlook the complexity of interactions among finer catego-
rizations of causes [ 1, 5]. Only recently [ 4] addressed this gap by taking a network 
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Fig. 1. Causes-of-death network sequence for the male population recorded in Italy 
in 2019. Top: adjacency matrices, where black and white cells represent edges and 
nonedges, respectively. Colored strips identify the partition estimated using dSBM (see 
Sects. 2 and 3). Bottom: network summary indicators over age. 

viewpoint and representing the causes of death as the nodes of an undirected 
graph, where edges encode age-specific co-occurrences of different mortality fac-
tors. Figure 1 shows the adjacency matrices and some global summary statistics 
of the networks obtained for the male population in Italy recorded in 2019. The 
considered networks contain 139 nodes each derived by the ICD-10 classification 
[ 7], where we excluded external causes, injuries, and never-observed causes. Each 
network is built on an evenly spaced age grid covering 10 years of collected data, 
while the full sequence of networks spans all available ages. Deaths occurring 
within the first year of life are treated separately to account for delivery and 
infant mortality. An edge is observed in the network if at least 1 co-occurrence 
has been observed in the population during the considered age period. Both the 
adjacency matrices and the summary statistics manifest a clear dynamic evolu-
tion of the network sequence during the life span, where at older ages the net-
works exhibit increasingly higher connectivity and transitivity. The raw data are
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available upon request from the Italian National Institute of Statistics (ISTAT), 
which collects all the mortality causes for each recorded death. 

Assuming that the mortality causes have a mutually exclusive and exhaustive 
grouping structure, with nodes in the same cluster sharing common connectivity 
profiles at a fixed age, we employ a simplified version of the dynamic Stochastic 
Block Model (dSBM) proposed in [ 4] to flexibly characterize the network evolu-
tion over age. Such a simplified version leverages an Extended Stochastic Block 
Model (ESBM) [ 2] likelihood and a time-dependent Random Partition Model 
(tRPM) [ 3] prior to infer hidden structures in the network sequence, allowing 
for dynamic clustering of causes over age or time. This method overcomes key 
limitations of existing statistical models for dynamic networks by jointly esti-
mating the number of clusters and modeling temporal dependencies. 

2 Dynamic Stochastic Block Model 

Here, we briefly outline a simplified version of the dSBM model proposed by [ 4], 
focusing on the likelihood specification in Sect. 2.1, prior elicitation in Sect. 2.2, 
and posterior computation in Sect. 2.3. Unlike the general dSBM model, such 
a simplified version assumes binary undirected edges, and a single partition 
sequence regulating the node group structure. By doing so, we first introduce 
the following notation. Let Yx denote the V × V symmetric adjacency matrix at 
age x ∈ {1, . . . , N  } encoding the binary relationships between nodes, i.e., causes 
of death. In particular, each yvux = yuvx ∈ {0, 1} account for the symmetric link 
between v and u, for every v ∈ {2, . . . , V  } and u ∈ {1, . . . , v  − 1}, with yvux 
taking value 1 if an edge is observed and 0 otherwise. 

2.1 Likelihood Specification 

Specializing the general dSBM to our data, we assume for the causes-of-death 
network at age x an ESBM specification [ 2], clustering the nodes into mutually 
exclusive and exhaustive groups. In particular, we denote by zx = (z1x, . . . , zV x) 
the vector of cluster allocations, where zvx = h ∈ {1, . . . , Hx} means that at age 
x the cause v belongs to group h. Additionally, we define ρx ∈ P as the partition 
induced by the allocation vector zx, where P is the set of all possible partitions 
of V nodes. dSBM allows for a different number of groups at each age, letting 
Hx vary over x. To accommodate for the dichotomic nature of the adjacency 
matrix, we consider a Bernoulli distribution with parameter θzvxzuxx ∈ (0, 1) 
for yvux. Moreover, we assume homogeneous connectivity structures within and 
between each block, that is θzvxzuxx = θhkx for zvx = h and zux = k. Finally, 
we consider an independent Beta prior distribution on each θhkx, thus leading 
to the hierarchical model 

(yvux | zvx = h, zux = k, θhkx) ind∼ Bernoulli(θhkx), θhkx 
ind∼ Beta(aθ, bθ), 

for nodes v ∈ {2, . . . , V  } and u ∈ {1, . . . , v  −1}, cluster labels h, k ∈ {1, . . . , Hx} 
and age class x ∈ {1, . . . N  }, where aθ, bθ > 0 are fixed prior hyperparameters.
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2.2 Prior Specification 

To model the age dependence between subsequent networks, dSBM relies on a 
latent partition process following a Markovian evolution of the partitions, that 
is pr(ρ1, . . . , ρN ) = pr(ρ1)

∏N 
x=2 pr(ρx | ρx−1). Then, we need to specify 

an explicit form for the transition probability pr(ρx | ρx−1) and the initial 
distribution pr(ρ1). To this end, dSBM employs the tRPM prior proposed by 
[ 3], which specifies the joint distribution of the partition sequence by introducing 
the augmented node-specific variables γx = (γ2x, . . . , γV x), such that 

pr(ρ1, γ2, ρ2, . . . , γN , ρN ) = pr(ρ1) 
N∏

x=2 

pr(γx) pr(ρx | γx, ρx−1), 

where pr(ρ1) is an exchangeable partition probability function (EPPF) describ-
ing how V nodes are clustered in H1 distinct groups, and γx is a parameter 
vector controlling the similarity between ρx and ρx−1. In particular, auxiliary 
variables γx ∈ {0, 1}V are node-specific indicators that identify which nodes can 
be considered for cluster reallocation moving from age x − 1 to age x, that is:  
γvx = 0 if node v can be reallocated, γvx = 1 otherwise. tRPM then assumes 
independent Bernoulli distributions with parameter αx ∈ [0, 1] for all auxil-
iary variables, such that αx plays the role of a common dependence parameter. 
Indeed, αx = 0 implies almost sure independence between ρx and ρx−1, con-
versely, αx = 1 implies that ρx = ρx−1 with probability 1. In addition, tRPM 
assumes Beta prior distributions over αx, thus obtaining the hierarchical prior 
specification 

(γvx | αx) ind∼ Bernoulli(αx), αx 
ind∼ Beta(aα, bα), 

for node v ∈ {1, . . . , V  } and age x ∈ {1, . . . N}, where aα, bα > 0 are fixed prior 
hyperparameters. 

To characterize the transition probability pr(ρx | γx, ρx−1), we define the 
index set Rx = {v : γvx = 1} as the collection of nodes that can not be real-
located. Moreover, we define ρRx 

x as the reduced partition corresponding to the 
index set Rx. Then, defining the restricted partition space Px = {ρx ∈ P : 
ρRx 

x = ρRx 
x−1}, tRPM assumes for the transition probability from ρx−1 to ρx the 

following form 

pr(ρx = ρ | γx, ρx−1) ∝ pr(ρx = ρ) 1(ρ ∈ Px), 

where pr(ρx = ρ) is the EPPF at age 1 evaluated at the generic partition ρ ∈ P , 
and 1(A) is the indicator function of the event A. 

To complete the prior specification for the partition sequence {ρ1, . . . , ρN}, 
tRPM considers a Chinese Restaurant Process prior with concentration parame-
ter η >  0 for the initial partition ρ1, thus implying the following marginal EPPF 
for ρx: pr(ρx = ρ) =  ηHxΓ(η)

∏Hx 

h=1 Γ(Vhx)/Γ(η + V ), for all x ∈ {1, . . . , N}, 
where Vhx is the size of cluster h at age x. Additionally, we assume the con-
jugate prior distribution η ∼ Gamma(aη, bη), where aη, bη > 0 are fixed prior 
hyperparameters, enabling a flexible estimation of the concentration parameter.
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2.3 Posterior Computation 

Similarly to the general dSBM in [ 4], also our simplified version outlined in 
Sects. 2.1 and 2.2 does not enjoy a posterior distribution of known closed-form, 
hence MCMC algorithms are needed to perform posterior inference. To this end, 
we adapt the collapsed Gibbs sampler in [ 4] to our construction. The resulting 
routine iteratively samples from the full-conditional distributions (γ | z, α, η, y), 
(z | γ, α, η, y), (α | z, γ, η, y) and (η | z, γ, α, y), where the edge probabilities 
θ can be marginalized analytically, as shown in [ 2]. To summarize the poste-
rior distribution of the partition sequence, we minimize the expected posterior 
variation of information metric thus finding fully Bayesian point estimate and 
credibility sets, as proposed in [ 6]. 

3 Application to the Italian Causes-of-Death Networks 

We here apply the dSBM model reviewed in Sect. 2 to the Italian causes-of-
death data presented in Sect. 1. We set uninformative uniform prior on θ and α, 
corresponding to aθ = bθ = aα = bα = 1, and diffuse prior on η, with aη = 0.001 
and bη = 0.001. Posterior inference is based on 40.000 MCMC samples, after a 
burn-in of 10.000 draws. 

Figure 1 shows the adjacency matrices with rows and columns rearranged on 
the base of the age-specific partition point estimates obtained by minimizing the 
expected posterior variation of information. From this analysis, it emerges that 
the network nodes manifest a clustering structure smoothly evolving over age, 
with an increasing number of clusters that reaches its maximum at age class 
50–59 and remains stable since 80–89. Younger ages are characterized by a few 
weakly-connected clusters, with only a few nodes manifesting a high level of con-
nectivity. As age increases, both within-cluster and between-cluster connectivity 
rise, along with the overall network density. From a demographic and medical 
viewpoint, this pattern is reasonable, as older individuals tend to accumulate 
multiple chronic diseases, increasing their exposure to additional mortality risks. 
Across all ages, we observe a group of nodes (red cluster) lacking both internal 
and external connections. This weakly connected cluster is larger at younger 
ages but shrinks progressively with age. For instance, at birth (age 0), many 
neoplasms and chronic diseases fall within this cluster, as these risk factors are 
unlikely to affect newborns. Conversely, birth-related mortality factors, such as 
delivery complications or infant malformations, form a highly connected cluster 
at age 1 (green cluster). In subsequent networks, these causes shift to the uncon-
nected cluster, while many neoplasms transition from the red cluster to more 
connected ones. 
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