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Abstract
Death events commonly arise from complex interactions among interrelated causes, formally

classified in reporting practices as underlying and contributing. Leveraging information from death
certificates, these interactions can be naturally represented through a sequence of directed networks
encoding co–occurrence strengths between pairs of underlying and contributing causes across ages.
Although this perspective opens the avenues to learn informative age–specific block interactions
among endogenous groups of underlying and contributing causes displaying similar co–occurrence
patterns, there has been limited research along this direction in mortality modeling. This is mainly
due to the lack of suitable stochastic block models for sequences of directed networks indexed by
a predictor. We cover this gap through a novel Bayesian formulation which crucially learns two
separate group structures for underlying and contributing causes, while allowing both structures to
change smoothly across ages via dependent random partition priors. As illustrated in simulation
studies, the proposed formulation outperforms state–of–the–art solutions that could be adapted to
our motivating application. Moreover, when applied to usa mortality data, it unveils structures
in the composition, evolution, and modular interactions among causes–of–death groups that were
hidden to classical demographic studies. Such findings could have relevant policy implications and
contribute to an improved understanding of the recent “death of despair” phenomena in the usa.

Keywords: Causes of Death; Dependent Random Partition Prior; Directed Network; Mortality Mod-
eling; Stochastic Block Model

1 Introduction

Although demographic research has traditionally focused on investigating mortality phenomena via

overall longevity indicators (e.g., Canudas-Romo, 2010; Van Raalte, 2021), recent state–of–the–art stud-

ies have suggested that a comprehensive understanding of the core determinants behind modern mor-

tality trends necessarily requires a finer–scale analysis disaggregating such trends across causes of death

(e.g., Egidi et al., 2018; Woolf and Schoomaker, 2019; Canudas-Romo et al., 2020; Bergeron-Boucher

et al., 2020; Mehta et al., 2020; Grippo et al., 2020; Stefanucci and Mazzuco, 2022; Trias-Llimós and

Permanyer, 2023; Calazans and Permanyer, 2023). Besides yielding a deeper understanding of mortal-

ity patterns, these analyses are also of paramount importance to devise innovative policies in public

health, and evaluate the corresponding effects across multiple, often interrelated, causes of death (e.g.,

Aburto et al., 2018; Bergeron-Boucher et al., 2020).
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The relevance of the above endeavor combined with the availability of increasingly–refined data re-

sources (see, e.g., the “who Mortality Database”, the “Human Causes of Death Data Series“, the “Global

Burden of Disease“, and the “us National Center for Health Statistics“), have produced an unprece-

dented understanding of modern mortality trends that lacked a clear explanation under classical studies

focused on aggregated longevity indicators. These advancements have been achieved through the de-

sign of inference and predictive methods for the compositions, determinants, diversification and trends

of either the underlying cause of death (i.e., “the disease or injury which initiated the chain of events

leading directly to death“ (World Health Organization, 2016)) (see, e.g., Foreman et al., 2018; Bergeron-

Boucher et al., 2020; Mehta et al., 2020; Stefanucci and Mazzuco, 2022; Depaoli et al., 2024; Ahmad

et al., 2024; Huynh and Ludkovski, 2024) or multiple causes of death (mcod), comprising both the un-

derlying one and its contributing causes (i.e., “all other significant conditions contributing to death but

not resulting in the underlying cause“ (World Health Organization, 2016)) (see, e.g., Désesquelles et al.,

2010, 2012, 2014; Moreno-Betancur et al., 2017; Egidi et al., 2018; Grippo et al., 2020; Trias-Llimós

and Permanyer, 2023; Bishop et al., 2023; Grippo et al., 2024). Recalling the comprehensive review by

Bishop et al. (2023), among these two perspectives, the second has been object of increasing interest

in the recent years since it aligns more closely with the fact that death events are commonly associated

with complex systems of multiple interrelated causes, rather than a single one in isolation (e.g., Israel

et al., 1986; Redelings et al., 2006; Désesquelles et al., 2014; Trias-Llimós and Permanyer, 2023). As

a consequence, mcod analyses have potential to provide more refined and realistic understanding of

modern mortality patterns, while opening the avenues to study the higher–level system of relational

structures among underlying and contributing causes, along with its changes across age classes.

Leveraging the available data from death certificates, the aforementioned relational system can be

naturally represented via a sequence of networks whose directed edges measure, for each age class, the

strength of the co–occurrence relation “cause i appears as the underlying of the contributing cause j”.

However, despite its potential in unveiling yet–unexplored relational structures among causes of death

with promising policy impact (e.g., Désesquelles et al., 2010, 2012, 2014), this network perspective has

been mostly overlooked in mcod studies. As discussed in the following, a key barrier toward advancing

along this direction can be found in the lack of suitable statistical models capable of uncovering relevant
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and interpretable structures that drive the formation and evolution of the complex co–occurrence pat-

terns among underlying and contributing causes of death, across ages. In fact, similarly to epidemiol-

ogy studies of co–morbidity networks (e.g., Jeong et al., 2017; Fotouhi et al., 2018; Jones et al., 2023),

current network–based mcod analyses (e.g., Egidi et al., 2018; Ukolova and Burcin, 2023) rely on

traditional summary measures applied to simplified versions of the original data, which specialize the

analysis to a single age class and do not consider the distinction between underlying and contributing

causes. Therefore, although these contributions have the merit of showcasing the potential of the net-

work perspective within mcod studies, the resulting findings are descriptive in nature and do not in-

form on how relational structures among underlying and contributing causes vary across ages.

As showcased in our application to usa mortality data in 2019 (see Sections 1.1 and 5), over-

coming the above limits necessarily requires a model–based perspective capable of accounting for the

full complexity of causes–of–death co–occurrence patterns across several dimensions, while quantifying

uncertainty in the inferred structures behind these observed patterns. Advancements along these lines

are not only essential to possibly refine current health care investment policies in a phase characterized

by a higher diversification, increasing complexity and lower predictability of multiple causes–of–death

landscapes (see, e.g., Bergeron-Boucher et al., 2020; Trias-Llimós and Permanyer, 2023), but could

also help in resolving recent debates on the determinants behind modern mortality trends. A relevant

one, which motivates our focus on usa causes–of–death data, revolves around the recent stagnation

in the usa life expectancy (e.g., Woolf and Schoomaker, 2019; Mehta et al., 2020; Case and Deaton,

2021). While such a stagnation has been attributed to a growing mid–life mortality, the determinants

underlying this mortality increment have generated a debate around different views that either sup-

port causes such as drug overdoses, alcohol abuses and suicides (“death of despair”) (e.g., Woolf and

Schoomaker, 2019; Case and Deaton, 2021) or identify cardiovascular diseases as main drivers (e.g.,

Mehta et al., 2020). Albeit different, both views arise from the study of underlying causes. Hence, as

illustrated in Section 5, the current debate can find a consensus under a refined model–based analysis of

causes–of–death networks that is capable of inferring age–specific block interactions among endogenous

groups of underlying and contributing causes displaying similar co–occurrence patterns. These inferred

clustering structures and the associated block interactions might, in fact, unveil unexplored modules

3



among seemingly unrelated causes that were object of past debates. In addition, as illustrated within

Figure 5, such a perspective yields an interpretable reconstruction of complex modules in causes–of–

death networks that unveil within– and across–group diversification structures in both underlying and

contributing causes, along with the associated changes at different age classes. This is a key to shift the

focus of current investment policies away from targeting a single underlying cause with a high preva-

lence in the population and toward jointly prioritizing internally–homogenous groups of underlying and

contributing causes characterized by remarkable modular co–occurrences at given age classes.

Motivated by the above endeavor, we generalize stochastic block model (sbm) representations (e.g.,

Holland et al., 1983; Nowicki and Snijders, 2001) to learn informative structures in age–indexed se-

quences of categorically–weighted directed networks among underlying and contributing causes of death.

As clarified in Sections 2–3, the proposed formulation (i) learns two separate group structures for un-

derlying and contributing causes, respectively, (ii) allows these structures to change smoothly across

age classes via dependent random partition priors (Page et al., 2022) further informed by external

macro–classifications of death causes through product partition models (Müller et al., 2011), (iii) au-

tomatically estimates the number of groups for each network in the sequence, (iv) accounts for flexible

block interactions among these inferred groups and (v) facilitates principled uncertainty quantification

and inclusion of expert knowledge under a Bayesian approach to inference.

Although classical sbms have witnessed effective extensions in several directions over the recent

years, a flexible formulation addressing (i)–(v) within a single construction is lacking in the literature.

In fact, while state–of–the–art dynamic stochastic block models could be possibly adapted to our mo-

tivating application by replacing time with age, available formulations (e.g., Ishiguro et al., 2010; Yang

et al., 2011; Xu and Hero, 2014; Xu, 2015; Matias and Miele, 2017; Pensky and Zhang, 2019; Goto et al.,

2021) are not designed to infer two separate partitions for the rows and columns of the adjacency matri-

ces characterizing the observed directed networks. Furthermore, these models lack strategies to inform

such grouping structures by external node attributes, often focus on binary edges, and generally cannot

learn automatically the number of groups for each network in the sequence. While these issues have been

addressed separately in the literature (e.g., Tallberg, 2004; Kemp et al., 2006; Mariadassou et al., 2010;

Rohe et al., 2016; Zhang et al., 2016, 2022; Geng et al., 2019; Legramanti et al., 2022; Durante et al.,
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2025), the overarching focus of available contributions has been on static, single–network, settings,

rather than on sequences of networks indexed by an ordered covariate (e.g., time or age).

The importance of covering the above methodological gap is illustrated through realistic simulation

studies in Section 4, where the model we propose in Sections 2–3 is shown to outperform and extend

the inference potential of state–of–the–art dynamic sbms that could be possibly employed in the ap-

plied settings motivating our contribution. These advantages are strengthened in the application to

usa mortality data within Section 5. In this case, our model unveils yet–unexplored structures in the

composition, evolution, diversification and modular interactions among underlying and contributing

causes–of–death groups that were hidden to previous demographic studies. Such findings may have im-

portant policy implications and open the avenues to achieve a more comprehensive understanding of the

determinants underlying the recent stagnation in the usa life expectancy (e.g., Woolf and Schoomaker,

2019; Mehta et al., 2020; Case and Deaton, 2021). Concluding remarks can be found in Section 6.

1.1 USA Causes–of–Death Data

As anticipated in Section 1, our motivating application arises from the attempt to unveil higher–level

and more nuanced determinants behind the alarming stagnation in the usa life expectancy (e.g., Woolf

and Schoomaker, 2019; Mehta et al., 2020; Case and Deaton, 2021) through a novel perspective that

avoids overly–simplified analyses of the underlying cause of death, but rather studies the complex in-

teraction systems among multiple, interrelated, causes.

To this end, we focus on age–indexed sequences of co–occurrence networks among underlying and

contributing causes extracted from the ≈ 2,860,000 death certificates recorded in the usa for 2019 (see

https://wonder.cdc.gov/mcd-icd10.html). Such certificates are issued as part of the National Vital

Statistics System maintained by the National Center for Health Statistics (nchs), and document, for

each death event, key demographic information, such as gender and age, alongside a single underlying

cause and its contributing ones. All these causes are identified according to the International Classifi-

cation of Diseases (icd) system (now in its 11th revision), which employs different levels of granularity,

ranging from a single alphabetic character associated with broad macro–categories, to the finest–scale

seven–character code that identifies highly–detailed sub–categorizations for each cause. Such a latter
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classification yields thousands of mortality factors, with a large portion comprising extremely–specific

and highly–rare causes. For this reason, and consistent with our overarching focus, we consider the

classification based on the first two characters of the icd codes, upon discarding never–observed causes

and those not related to diseases and pre–existing medical conditions (i.e., injuries and external). This

choice yields a total of n = 139 causes under analysis, thereby achieving an effective balance between

overly–aggregated studies that fail to unveil nuanced patterns, and excessively–fine classifications which

do not facilitate interpretable analyses and may be more prone to reporting issues due to increased

challenges in disentangling highly–similar causes (e.g., Redelings et al., 2007; Désesquelles et al., 2010,

2012, 2014; Bishop et al., 2023). Leveraging routine practice in demographic studies (see, e.g., Dés-

esquelles et al., 2010; Lozano et al., 2012; Trias-Llimós and Permanyer, 2023; Depaoli et al., 2024), we

further stratify the data by age classes defined as [0, 1], (1, 10], (10, 20], . . . , (90, 100], where the first

group accounts for the peculiar patterns associated with infant death events.

Leveraging the above stratifications of the death certificates together with the causes–of–death clas-

sification considered, it is thus possible to record, for each age class x, the total number of certificates

that have cause i as the underlying of the contributing j, for every i = 1, . . . , n and j = 1, . . . , n. While

these pairwise counts already yield a sequence of causes–of–death co–occurrence networks across ages,

we opt for analyzing a discretized version of such directed networks which classifies the original counts

into four interpretable levels, defined as absent (0), rare (1–10), present (11–100), and frequent

(>100). This choice is motivated by two main reasons. First, it facilitates interpretation by provid-

ing policy experts with findings based on a simple and intuitive four–level measure of co–occurrence

strengths among causes of death. Second, it is beneficial in reducing the noise and partial distortions

that may arise from the aggregation of hundreds of thousands of death certificates compiled by differ-

ent specialists across usa in a year. Note that, although different thresholds may be considered, those

we identify are based on the analysis of the empirical distribution of the co–occurrence counts, whose

median across ages and causes–of–death pairs is ≈ 15. This motivates our focus on multiples of 10,

which proved also robust when considering other connectivity measures among causes of death that

normalize the pairwise counts with respect to the degree of appearance of the associated causes within

the certificates (e.g., Hidalgo et al., 2009; Chmiel et al., 2014; Fotouhi et al., 2018); see Section 6.
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Figure 1: For the male and female populations, graphical representations of the adjacency matrices associated with the
cause–of–death networks studied, at four selected consecutive age classes. In each matrix, rows (underlying causes) and
columns (contributing causes) are re–ordered according to the two group structures identified by a basic hierarchical
clustering algorithm. Such an algorithm is applied separately to the two dimensions of each adjacency matrix leveraging
the Hamming distance (Hamming, 1950) as a measure of dissimilarity among rows and between columns, respectively.

Figure 1 illustrates the adjacency matrices associated with the resulting networks under analysis, at

selected age classes, for both the male and female populations. To provide preliminary quantitative ev-

idence that supports the model developed in Sections 2–3, the entries of each matrix are re–ordered

to highlight the row and column groups learned by a basic hierarchical clustering algorithm (see the R

library pheatmap). This algorithm is applied separately to the two dimensions of each adjacency ma-

trix, corresponding, respectively, to underlying (rows) and contributing (columns) causes, and employs

the Hamming distance (Hamming, 1950) as a measure of dissimilarity among the rows and between the

columns, respectively. As shown in Figure 1, there is a clear evidence of block co–occurrence structures

in the directed causes–of–death networks under analysis. These blocks are induced by group patterns

among rows and between columns that cannot be assumed equal, but rather should be studied as two

separate partitions. Furthermore, albeit estimated separately for each age class, such partitions seem

to vary smoothly across consecutive ages in the observed networks.

The above preliminary quantitative findings motivate the dependent sbm for age–indexed sequences

of directed causes–of–death networks developed in Sections 2–3. In fact, while the results in Figure 1

already provide relevant insights, basic hierarchical clustering is not designed to borrow information
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between row and column partitions across ages, and does not provide a principled model–based repre-

sentation of the complex joint system of interactions among underlying and contributing causes across

age classes. These issues do not facilitate rigorous inference, uncertainty quantification, supervision by

meaningful external information and, possibly, assessment of the effects of different policy scenarios via

simulations from the generative model. Moreover, the results in Figure 1 are descriptive in nature, and

hence, are also more prone to suffer from the possible distortions that arise from reporting practices of

death certificates, an issue which is not specific to our analysis, but rather common to all causes–of–

death studies (see, e.g., Redelings et al., 2007; Désesquelles et al., 2010, 2012, 2014; Bishop et al., 2023).

Although recent advancements and automated reporting procedures have substantially improved the

quality of death certificates, mitigating possible biases through careful data–preprocessing and princi-

pled statistical models that account for uncertainty is still important. Our contribution moves along

these lines, while further addressing potential reporting issues through the supervision by biologically–

meaningful external classifications of the causes of death. In this respect, it shall be emphasized that

certain groups inferred by the novel sbm we propose in Sections 2 and 3 may be also useful in unveiling

systematic reporting practices associated with specific underlying and contributing causes at given age

classes. As a result, our contribution can also help in improving the understanding of such practices,

thereby motivating the design of additional guidelines in causes–of–death reporting.

2 Dependent Stochastic Block Models for Directed Networks

Define the four levels absent, rare, present and frequent introduced in Section 1.1 through the nu-

merical label c = 1, . . . , 4. Moreover, recode the age classes [0, 1], (1, 10], (10, 20], . . . , (90, 100] into the

ordered indexes x = 1, 2, . . . ,m (with m = 11 in our application). Then, the networks analyzed are

available in the form of a sequence Y1, . . . ,Ym of n× n categorically–weighted asymmetric adjacency

matrices, where the generic Yx has entries yijx = c if, at age class x, the strength of the directed co–

occurrence relation “cause i appears as the underlying of the contributing cause j” is equal to c.

In Section 2.1, we generalize state–of–the–art sbms to define a probabilistic generative mechanism

for Y1, . . . ,Ym, which addresses points (i)–(v) discussed in Section 1 via a single formulation. Such a

joint model is designed to infer age–specific block interactions among endogenous groups of underlying
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and contributing causes displaying similar co–occurrence patterns. To this end, we employ, and learn,

two separate grouping structures that are allowed to change smoothly across age classes via dependent

random partition priors further informed by macro–classifications of death causes. Such priors are in-

spired by contributions of Page et al. (2022) and Müller et al. (2011), and are presented in Section 2.2.

2.1 Model Formulation

Guided by the empirical evidence in Figure 1, we extend available sbms to infer separate group struc-

tures for the underlying and contributing causes, respectively, from the block patterns displayed by the

observed adjacency matrices Y1, . . . ,Ym. Recalling Section 1, current sbms (e.g., Holland et al., 1983;

Nowicki and Snijders, 2001; Schmidt and Morup, 2013; Lee and Wilkinson, 2019; Geng et al., 2019;

Legramanti et al., 2022) mostly focus on binary undirected networks, thus requiring only a single parti-

tion to flexibly characterize the modular architectures in the observed network. Such a single partition

is often employed also in directed settings under the assumption that the rows and columns of the asym-

metric adjacency matrix display a shared group structure (see, e.g., Wang and Wong, 1987; Newman

and Leicht, 2007; McDaid et al., 2013; Peixoto, 2022). Although this perspective simplifies the model,

in practice, it may provide an unrealistic characterization of the data generative mechanisms in di-

rected settings, thus raising misspecification issues that yield to biased inferences. In fact, as illustrated

in Figure 1, it is reasonable to expect that two generic causes of death having similar co–occurrence

patterns when treated as underlying, may not display the same similarities when considered as con-

tributing. In addition, these co–clustering relations might also vary across different age classes.

Consistent with the above discussion we employ, for each age–class index x = 1, . . . ,m, two sepa-

rate partitions (one for the underlying causes and the other for the contributing ones), whose Cartesian

product yields a block structure on the adjacency matrix Yx that clusters together, within each block,

pairs of underlying and contributing causes with similar co–occurrence strengths. More specifically, let

z(1)x = (z(1)1x, . . . , z(1)nx) and z(2)x = (z(2)1x, . . . , z(2)nx) be the group membership vectors associated to

the generic row and column partitions Z(1)x = {Z(1)1x, . . . ,Z(1)Hxx} and Z(2)x = {Z(2)1x, . . . ,Z(2)Kxx},

such that z(1)ix = h, for h = 1, . . . , Hx, if and only if i ∈ Z(1)hx and, analogously, z(2)jx = k, for k =

1, . . . , Kx, if and only if j ∈ Z(2)kx. Then, extending the classical Bernoulli likelihoods for binary edges
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to the categorically–weighted interactions characterizing the networks under analysis, we assume that

(yijx | z(1)ix = h, z(2)jx = k,θhkx) ∼ Cat1:4(θhkx), independently for every i = 1, . . . , n, j = 1, . . . , n and

x = 1, . . . ,m, where Cat1:4(θhkx) is a categorical variable indexed by the probability vector θhkx, with

entries θhkxc = pr(yijx = c | z(1)ix = h, z(2)jx = k) ∈ (0, 1), for c = 1, . . . , 4. Hence, consistent with gen-

eral sbms, within–block homogeneity is expressed by assuming that the distribution for each entry yijx

of Yx only depends on the corresponding row and column groups along with the probability vector char-

acterizing the block associated to such a pair of groups. This means that the co–occurrence strengths

among all underlying and contributing causes in groups h and k, respectively, are generated from the

same categorical distribution, whose parameters can change across blocks (i.e., pairs of groups), but not

within block, thereby accounting for flexible modular structures in the observed networks.

To complete our Bayesian formulation, we require priors on the group membership vectors z(1)x and

z(2)x, x = 1, . . . ,m, together with the block–specific parameters θhkx, for h = 1, . . . , Hx, k = 1, . . . , Kx

and x = 1, . . . ,m. Extending routine Bayesian sbms (e.g., Nowicki and Snijders, 2001; Mariadassou

et al., 2010; Legramanti et al., 2022) from binary to categorical relationships, it is natural to consider

independent Dirichlet(aθ = (aθ1, . . . , a
θ
4)) priors for the block–specific parameters θhkx, h = 1, . . . , Hx,

k = 1, . . . , Kx and x = 1, . . . ,m. Besides corresponding to the multivariate generalization of the Beta

priors employed for the block probabilities in binary networks, such a choice achieves conjugacy with the

Cat1:4(θhkx) distribution assumed for the entries of Yx. As such, the block–specific parameters can be

integrated out analytically to obtain a Dirichlet–categorical joint likelihood for Y1, . . . ,Ym conditioned

on the group membership vectors z(1)x and z(2)x, x = 1, . . . ,m. In particular

p(Y1, . . . ,Ym | (z(1)x, z(2)x), x = 1, . . . ,m) =
m∏

x=1

(
Hx∏
h=1

Kx∏
k=1

[
Γ(aθ•)

Γ(aθ• + nhkx•)

4∏
c=1

Γ(aθc + nhkxc)

Γ(aθc)

])
, (1)

where nhkxc represents the number of pairs (i, j) such that z(1)ix = h, z(2)jx = k and yijx = c, while

nhkx• =
∑4

c=1 nhkxc and aθ• =
∑4

c=1 a
θ
c . The likelihood in (1) formally treats the quantities θhkx, h =

1, . . . , Hx, k = 1, . . . , Kx, x = 1, . . . ,m as nuisance parameters and focuses inference on the group struc-

tures encoded in z(1)x and z(2)x, for x = 1, . . . ,m. While learning the block–specific probability vectors

θhkx is also of interest, this perspective is common in sbm formulations (e.g., Wyse and Friel, 2012;

McDaid et al., 2013; Schmidt and Morup, 2013; Legramanti et al., 2022; Durante et al., 2025), whose
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primary interest lies in uncovering groups of nodes that display similar connectivity patterns within the

observed network. In our context, such an information is encoded in z(1)x and z(2)x, for x = 1, . . . ,m,

thereby motivating our main focus on these two vectors under the Dirichlet–categorical joint likelihood

in (1). As discussed in Section 3, this choice further facilitates posterior computation, and does not

prevent from obtaining ex–post sensible estimates of θhkx, h = 1, . . . , Hx, k = 1, . . . , Kx, x = 1, . . . ,m.

Notice that the likelihood in (1) factorizes across the age–class indexes x = 1, . . . ,m. Although this

formulation is useful to avoid overly–sophisticated and intractable representations, as shown within Fig-

ure 1, causes–of–death networks exhibit a form of dependence across ages, which is visible in terms of

smooth transitions for the corresponding group structures over contiguous age classes. In Section 2.2,

we incorporate this dependence through carefully designed priors for the two sequences z(1)1, . . . , z(1)m

and z(2)1, . . . , z(2)m that further include external information on cause–of–death macro–classifications.

2.2 Prior for Dependent Sequences of Random Partitions

As anticipated in Section 2.1, we elicit priors for the two sequences z(1)1, . . . , z(1)m and z(2)1, . . . , z(2)m

which enforce smooth, yet flexible, transitions for the group membership vectors across contiguous age

classes, while informing these vectors through external macro–classifications of causes of death. Such a

latter exogenous information is encoded in the vector w = (w1, . . . , wn), whose generic categorical entry

wi identifies the macro–category l = 1, . . . , L (e.g., neoplasms, malformations, circulatory diseases,

mental health problems, etc...) of cause i = 1, . . . , n. This macro–classification can be retrieved from

the icd system presented in Section 1.1, yielding a total of L = 19 macro–categories.

Consistent with the above discussion, we leverage the dependent random partition priors of Page

et al. (2022) in combination with product partition model constructions (Müller et al., 2011) to obtain

(z(1)1, . . . , z(1)m | w,α(1), η(1)) ∼ drpm-w(α(1), η(1)),

(z(2)1, . . . , z(2)m | w,α(2), η(2)) ∼ drpm-w(α(2), η(2)),

(2)

where α(1),α(2), η(1) and η(2) are prior hyper–parameters whose meaning will be clarified in the follow-

ing, whereas drpm-w denotes the assumed dependent random partition prior informed by w. Such a

prior is presented in detail in Section 2.2.1 for the generic sequence z1, . . . , zm, where the indexes (1)

and (2) associated with the two partitions under analysis are removed for the sake of generality.
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2.2.1 Constructive Representation

The drpm-w(α, η) prior for a generic sequence of group allocations z1, . . . , zm is defined hierarchically

through a Markovian mechanism, which combines two main constructions. The first one is a flexible,

yet smooth, transition mechanism from zx−1 to zx regulated by n independent Bernoulli(αx) variables

γ1x, . . . , γnx, with the generic γix controlling wether the i–th cause of death is allowed to possibly change

group allocation from age class x− 1 to x (i.e., γix = 0), or not (i.e., γix = 1) (Page et al., 2022). The

second is a carefully–designed supervised Chinese restaurant process prior crp-w(η) (Müller et al.,

2011; Page et al., 2022; Legramanti et al., 2022) regulating both the formation of the group structures

among causes at the first age class, i.e., z1, and the mechanism through which the subset of causes with

γix = 0, for i = 1, . . . , n, are re–allocated to clusters from zx−1 to zx, for each age x = 2, . . . ,m.

Recalling classical results from Bayesian nonparametrics (see Gershman and Blei (2012) for an in-

troductory overview) in connection with covariate–dependent product partition models (Müller et al.,

2011), the assumed crp-w(η) prior has probability mass function for the generic group membership

vector z defined as p(z | η,w) ∝ [ηHΓ(η)/Γ(η+ n)]
∏H

h=1 ρdc(wh, a
w)(nh − 1)!. In this expression, Γ(·)

corresponds to the Gamma function, nh denotes the number of causes in group h, and wh is the vector

encoding the memberships to the L external macro–categories of the nh causes in group h. This ex-

ogenous information enters p(z | η,w) via the Dirichlet–categorical cohesion function ρdc(·, aw) with

parameters aw = (aw1 , . . . , a
w
L ) (Müller et al., 2011, Ch. 4), which increases the prior probabilities of

those groups that are homogenous with respect to the external macro–classification of the causes. As

such, by including ρdc(wh, a
w), the crp-w(η) supervises the classical crp(η) prior by the external co-

variate w in a way that favors internally–homogenous groups of causes with respect to the associated

macro–classification. Such a mechanism is evident when studying the conditional distribution for each

zi given z(−i) = (z1, . . . , zi−1, zi+1, zn). Under the crp-w(η) prior, this conditional distribution is

pr(zi = h | z(−i), η,w) ∝


n
(−i)
h

n̄
(−i)
hwi

+ awwi

n̄
(−i)
h• + aw•

for h = 1, . . . , H(−i),

η
awwi

aw•
for h = H(−i) + 1,

(3)

for every i = 1, . . . , n, where H(−i) and n
(−i)
h are the total number of non–empty groups and the cardi-

nality of the h–th cluster, respectively, after removing cause i, while n̄(−i)
hwi

corresponds to the number of
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causes in group h with the same macro–category of the i–th one. Finally, n̄(−i)
h• =

∑L
l=1 n̄

(−i)
hl = |w(−i)

h |,

aw• =
∑L

l=1 a
w
l and awwi

is the entry of aw corresponding to the macro–category of cause i. According

to (3), conditioned on z(−i), the i–th cause can either occupy a group already observed for the other

causes, or generate a new one. The former event has probability which depends on the cardinality of

the group, as for the classical crp prior, further reinforced by a factor that favors the attribution of the

i–th cause to those existing groups that have a higher fraction of causes with its same macro–category.

The creation of a new cluster is instead regulated by the crp concentration parameter η > 0 and by

those of the Dirichlet–categorical cohesion function (i.e., aw = (aw1 , . . . , a
w
L ), with al > 0, l = 1, . . . , L).

Consistent with (3), larger values for η yield a higher expected number of clusters in z.

Besides illustrating the tractability of the crp-w(η) prior, along with the meaning of its parameters,

the scheme in (3) plays also a key role in the Gibbs sampling algorithm designed in Section 3, and

clarifies that the total number of groups in the generic z does not need to be pre–specified, but rather

can be learned automatically. This is a substantial gain relative to popular sbms for dynamic networks

that could be possibly applied to our motivating application (see, e.g., Yang et al., 2011; Xu and Hero,

2014; Xu, 2015; Matias and Miele, 2017). In fact, such models assume knowledge of the total number of

groups, or leverage information criteria which require estimation under different settings for H. This

is a computationally challenging task in contexts where the number of groups varies with x.

Combining the above crp-w(η) formulation with the previously–introduced Bernoulli transition

mechanism yields the following hierarchical construction for the drpm-w(α, η) prior on the generic

sequence z1, . . . , zm of group membership vectors

(γix | α = (α2, . . . , αm))
indep.∼ Bernoulli(αx), i = 1, . . . , n, x = 2, . . . ,m,

(z1 | η,w) ∼ crp-w(η), (zx | zx−1,γx, η,w) ∼ crp-w(η)|Pzx−1,γx
, x = 2, . . . ,m,

(4)

where γx = (γ1x, . . . , γnx), while crp-w(η)|Pzx−1,γx
is the supervised Chinese restaurant process prior

constrained to the set of partitions Pzx−1,γx compatible with zx−1 under γx, namely all the partitions

among the n causes of death that can be derived from the one associated with the group membership

vector zx−1 by reallocating only those causes for which γix = 0. Recalling Page et al. (2022), under this

constraint, pr(zx = z | zx−1,γx, η,w) ∝ p(z | η,w)1(Z ∈ Pzx−1,γx), where p(z | η,w) is the previously–
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defined probability mass function of the crp-w(η) prior, whereas Z is the partition of the n causes

associated with the generic group membership vector z. As such, the prior on zx is anchored to zx−1 by

allowing only a subset of causes to change group allocation, with the size of this subset regulated by

the parameter αx ∈ [0, 1]. When αx = 1 the clustering structures among causes of death at age classes

x− 1 and x perfectly overlap, whereas a value of αx = 0 forces all causes to be re–allocated according

to an unrestricted crp-w(η) prior, thereby removing the dependence on zx−1. Therefore, as αx ranges

from 0 to 1, the vectors zx−1 and zx are favored to be increasingly similar.

Note that the above notion of smoothness is allowed to change flexibly across age classes via transition–

specific parameters α2, . . . , αm, which are assigned conjugate Beta hyperpriors, i.e., αx ∼ Beta(aα, bα),

for x = 2, . . . ,m. This allows smoothness to be inferred adaptively from the observed matrices Y1, . . . ,Ym.

Such a data–oriented perspective is considered also for the crp concentration parameter η on which we

assume a conjugate Gamma hyperprior (Escobar and West, 1995), namely η ∼ Gamma(aη, bη).

As illustrated in Section 3, this prior elicitation facilitates the design of a tractable tempered Gibbs–

sampler for posterior inference on the sequences of partitions z(1)1, . . . , z(1)m and z(2)1, . . . , z(2)m.

3 Posterior Computation and Inference

Posterior inference for the sequences of partitions z(1)1, . . . , z(1)m and z(2)1, . . . , z(2)m that parameterize

the Bayesian model presented in Section 2 is performed via Monte Carlo leveraging samples produced

by a carefully–designed collapsed Gibbs sampler in combination with adaptive parallel tempering. This

algorithm is derived in detail in Sections 3.1–3.2 by exploiting the tractability of the likelihood in (1)

along with the hierarchical representation (4) of the priors in (2). Section 3.3, concludes by presenting

useful inferential strategies to perform point estimation and uncertainty quantification on the group

structures encoded in z(1)1, . . . , z(1)m and z(2)1, . . . , z(2)m leveraging the Gibbs samples.

3.1 Collapsed Gibbs Sampler

The proposed Gibbs algorithm samples iteratively from the full–conditional distributions of the group

membership vectors z(1)1, . . . , z(1)m and z(2)1, . . . , z(2)m, the persistency variables γ(1)2, . . . ,γ(1)m and

γ(2)2, . . . ,γ(2)m appearing in the hierarchical representation (4) of the drpm-w priors in (2), and finally,
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the hyperparameters α(1), η(1), α(2), and η(2). As clarified in the following, by combining the priors

presented in Section 2.2 with the collapsed likelihood in (1) yields closed–form full–conditionals for all

these quantities, thereby facilitating the design of a tractable sampling scheme.

Focusing on the row–specific quantities z(1)1, . . . , z(1)m, γ(1)2, . . . ,γ(1)m, α(1) and η(1), let us first in-

troduce some useful notation. In particular, let Γ(1)x = {i = 1, . . . , n : γ(1)ix = 1} be the set of under-

lying causes whose group allocation does not change from x− 1 to x. Moreover, denote with Z(1)x|Γ(1)x

the partition induced by z(1)x considering only those underlying causes with indexes in Γ(1)x. Then,

adapting the derivations in Page et al. (2022) to our construction, the full–conditional distributions for

the binary persistency variables γ(1)ix, i = 1, . . . , n, x = 2, . . . ,m, are Bernoulli with probabilities

pr(γ(1)ix = 1 | −) =
α(1)x

α(1)x + (1− α(1)x)
p(Z

(1)x|Γ(+i)
(1)x

| η(1),w)

p(Z
(1)x|Γ(−i)

(1)x

| η(1),w)

1[Z
(1)x|Γ(+i)

(1)x

= Z
(1)x−1|Γ(+i)

(1)x

], (5)

for each node i = 1, . . . , n and age class x = 2, . . . ,m, where 1[·] corresponds to the indicator function,

whereas Γ
(−i)
(1)x = Γ(1)x \ {i} and Γ

(+i)
(1)x = Γ

(−i)
(1)x ∪ {i}. Notice that within the above expression the ratio

p(Z
(1)x|Γ(+i)

(1)x

| η(1),w)/p(Z
(1)x|Γ(−i)

(1)x

| η(1),w) relates directly to the conditional distribution for z(1)ix given

z
(−i)
(1)x, η(1) and w. As such, recalling also Page et al. (2022), it can be computed from (3) after replacing

the generic quantities n
(−i)
h , n̄(−i)

hwi
, n̄(−i)

h• and η with those specific to the reduced partition among the

underlying causes at age class x.

The results in (3) are also useful to sample the allocations z(1)ix at each age class x = 1, . . . ,m for

those underlying causes whose sampled γ(1)ix is equal to 0; if γ(1)ix = 1, then z(1)ix is kept fixed to the

group allocation drawn for cause i at x − 1. More specifically, denote with Zz(1)ix=h

(1)x the partition in-

duced by the group membership vector (z(1)1x, . . . , z(1)ix = h, . . . z(1)nx) with the i–th underlying cause

allocated to cluster h. Then, direct application of the Bayes rule in combination with results from Page

et al. (2022) yields a full–conditional categorical distribution for each z(1)ix with probabilities

pr(z(1)ix = h | −)

∝ pr(z(1)ix = h | z(−i)
(1)x, η(1),w)1[Zz(1)ix=h

(1)x|Γ(1)x+1
= Z(1)x+1|Γ(1)x+1

]
p(Yx | z(1)ix = h, z

(−i)
(1)x, z(2)x)

p(Y
(−i·)
x | z(−i)

(1)x, z(2)x)
,

(6)

for every h = 1, . . . , H
(−i)
x + 1, i = 1, . . . , n and x = 1, . . . ,m, where Y

(−i·)
x corresponds to the ad-
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jacency matrix at age class x without the i–th row. In the above expression, the prior probabilities

pr(z(1)ix = h | z(−i)
(1)x, η(1),w) are available directly from (3) after replacing the involved generic quantities

with those specific to the partition of the underlying causes at age x, whereas the constraint included

through the indicator function guarantees the compatibility discussed in Section 2.2.1 for contiguous

partitions (notice that compatibility with the partition at age class x− 1 holds by prior construction,

and hence, it does not need to be checked). Finally, generalizing results on Beta–Binomial distribu-

tions (e.g., Schmidt and Morup, 2013; Legramanti et al., 2022) to the Dirichlet–categorical one in (1),

also the likelihood factor within (6) admits the closed–form expression

p(Yx | z(1)ix = h, z
(−i)
(1)x, z(2)x)

p(Y
(−i·)
x | z(−i)

(1)x, z(2)x)
=

Kx∏
k=1

Γ(aθ• + n
(−i)
hkx•)

Γ(aθ• + nhkx•)

4∏
c=1

Γ(aθc + nhkxc)

Γ(aθc + n
(−i)
hkxc)

, (7)

for every h = 1, . . . , H
(−i)
x + 1, i = 1, . . . , n and x = 1, . . . ,m.

Given the persistency variables γ(1)ix, i = 1, . . . , n, x = 2, . . . ,m, also the prior hyperparameters

α(1)x, x = 2, . . . ,m admit closed–form full conditional distributions. More specifically, combining the

Bernoulli likelihood for each γ(1)ix with the Beta priors assumed in Section 2.2.1 for every α(1)x, yields

(α(1)x | −) ∼ Beta
(
aα +

∑n

i=1
γ(1)ix, bα + n−

∑n

i=1
γ(1)ix

)
, (8)

independently for x = 2, . . . ,m. Similarly–tractable full–conditionals are also available for the crp con-

centration parameter η(1) via a direct application of the results in Escobar and West (1995).

To conclude, it remains to update the column–specific quantities z(2)1, . . . , z(2)m, γ(2)2, . . . ,γ(2)m, α(2)

and η(2). Due to the model symmetry, these updates share the same structure of those derived for the

row–specific counterparts. As a consequence, it suffices to apply again (5)–(8) by replacing the quan-

tities and indexes related to the underlying causes with those of the contributing ones, and vice–versa.

3.2 Adaptive Parallel Tempering

Albeit tractable, the Gibbs routine presented in Section 3.1 requires exploration of a high–dimensional

discrete space involving two sequences of dependent random partitions. To mitigate the possible mixing

issues that may arise in this challenging computational setting, we combine the previously–derived

Gibbs sampler with an adaptive parallel tempering implementation.
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Parallel tempering (pt) is a general methodology to improve the mixing of mcmc algorithms, espe-

cially in settings characterized by complex high–dimensional posteriors that may exhibit multiple local

modes (e.g., Earl and Deem, 2005; Syed et al., 2022). In its general form, pt runs a sequence of indepen-

dent mcmc samplers at different temperatures, where higher–temperature chains allow for an improved

exploration of the state space by flattening the posterior distribution, and hence, also its local modes.

In contrast, lower–temperature chains sample from distributions progressively similar to the actual

posterior, thereby targeting the original distribution of interest. At each iteration, all chains are inde-

pendently updated performing a local move, which, in our case, uses the Gibbs sampling steps outlined

in Section 3.1. Then, at periodic intervals, the algorithm attempts to swap states between chains via a

Metropolis–Hastings acceptance criterion that ensures detailed–balance is maintained. This swap al-

lows lower–temperature chains to benefit from the broader exploration of higher–temperature ones.

Within our implementation we consider, in particular, non–reversible deterministic swap proposals

(Syed et al., 2021) to guarantee a more rapid information exchange among high– and low–temperature

chains. Moreover, we implement the online stochastic optimization method proposed by Miasojedow

et al. (2013) to dynamically adapt the temperature grid during the pt runs. This strategy builds a

decreasing sequence of inverse temperatures and, at each swap, it uses the associated acceptance proba-

bilities to tune the inverse–temperature grid via a Robbins–Monroe update targeting the desired accep-

tance level. Such a scheme robustifies pt against suboptimal specifications of the initial temperature

schedule, thus allowing for a more efficient exchange of information from high– to low–temperature

chains, which is fundamental to obtain an effective exploration of the posterior distribution.

3.3 Posterior Inference

Posterior inference on the quantities of interest is performed via Monte Carlo, relying on the samples

produced by the routine outlined in Sections 3.1–3.2. As discussed in Sections 1–2, our primary focus

lies on the group membership structures encoded in the sequences z(1)1, . . . , z(1)m and z(2)1, . . . , z(2)m,

which unveil the block patterns displayed by the observed causes–of–death networks across age classes.

Extending general guidelines in Bayesian model–based clustering (e.g., Wade and Ghahramani, 2018)

to our specific context, a natural and interpretable option for summarizing the posterior distribution
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over these group structures is to compute the so–called posterior similarity (or co–clustering) matrices

P̂(1)1, . . . , P̂(1)m and P̂(2)1, . . . , P̂(2)m, whose generic entries P̂(1)x[i,i′] and P̂(2)x[j,j′] estimate pr(z(1)ix =

z(1)i′x | Y1, . . . ,Ym) and pr(z(2)jx = z(2)j′x | Y1, . . . ,Ym) via the relative frequency of Gibbs samples

in which z(1)ix = z(1)i′x and z(2)jx = z(2)j′x, respectively. This yields an interpretable probabilistic

summary of the co–clustering relationships supported by the posterior across age classes, along with a

quantification of uncertainty in the inferred group structures.

Leveraging the above similarity matrices in combination with the decision–theoretic framework of

Wade and Ghahramani (2018) it is also possibile to obtain the posterior point estimates ẑ(1)x and ẑ(2)x

for z(1)x and z(2)x, respectively, at each age class x = 1, . . . ,m, via

ẑ(1)x = argminz E[vi(z(1)x, z) | Y1, . . . ,Ym], and ẑ(2)x = argminz E[vi(z(2)x, z) | Y1, . . . ,Ym],

where vi(·, ·) is the variation of information distance introduced by Meilă (2007) as a metric to measure

differences between two generic partitions via a comparison among individual and joint entropies. The

solutions to the above minimization problems can be obtained under the R library mcclust.ext (Wade

and Ghahramani, 2018), which requires, as inputs, the matrices P̂(1)x and P̂(2)x, respectively.

Besides studying the age–specific group structures among underlying and contributing causes en-

coded within ẑ(1)x and ẑ(2)x, respectively, in our specific context it is also of interest to assess the stabil-

ity of these structures across age classes. To this end, in Section 5 we will further study the meet of the

estimated partitions across selected contiguous ages. Recalling, e.g., Wade and Ghahramani (2018),

such a meet corresponds to a finer partition where two causes belong to the same meet cluster if these

causes co–cluster in all the considered partitions, thereby highlighting sets of underlying and contribut-

ing causes that display stable group behaviors across the selected age classes.

To conclude, notice that while the block–specific vectors θhkx are integrated out to obtain the likeli-

hood in (1), when such quantities are also of interest a plug–in estimate can be readily derived. In par-

ticular, denote with n̂hkxc the total number of pairs (i, j) such that ẑ(1)ix = h, ẑ(2)jx = k and yijx = c.

Then, leveraging Dirichlet–categorical conjugacy, a sensible point estimate for each θhkxc is

θ̂hkxc = E(θhkxc | Y1, . . . ,Ym, ẑ(1)x, ẑ(2)x) = (aθc + n̂hkxc)/(a
θ
• + n̂hkx•), (9)

for every h = 1, . . . , Ĥx, k = 1, . . . , K̂x, x = 1, . . . ,m and c = 1, . . . , 4.
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4 Simulation Studies
In this section, we present extensive simulation studies that illustrate the performance of the model

proposed in Section 2 and quantify its gains with the respect to state–of–the–art alternatives that could

be possibly employed within our motivating application. As a benchmark competitor, we consider, in

particular, the dynamic sbm proposed by Matias and Miele (2017) and implemented in the R library

dynsbm. This formulation has emerged in recent years as one of the most widely adopted implementa-

tions for inference on group structures among nodes varying across a temporal index (Peixoto, 2018;

Kim et al., 2018; Lee and Wilkinson, 2019), making it a natural candidate for benchmarking in our sim-

ulation study. Note that, unlike for our proposed model, the one designed by Matias and Miele (2017)

does not allow for two separate partitions on the rows and columns, respectively, and further assumes

that the total number of non–empty groups is constant across the sequence of networks. As such, the

comparison against this competitor is also useful to assess whether the increased flexibility provided by

the model we propose yields practical gains in settings aligned with our motivating application.

To provide a comprehensive assessment, the above models are tested in two different simulation

scenarios. The first resembles the structures discussed in Section 1 for the motivating causes–of–death

networks, where the data are generated from a sequence of categorically–weighted directed networks

regulated by two distinct partitions on the rows and columns of the adjacency matrices. As such, we

simulate edges (yijx | z(0)(1)ix = h, z
(0)
(2)jx = k,θ

(0)
hkx) ∼ Cat1:4(θ

(0)
hkx), independently for every i = 1, . . . , 100,

j = 1, . . . , 100 and x = 1, . . . , 10, where each θ
(0)
hkx is selected from four possible configurations —

namely, [0.85, 0.05, 0.05, 0.05], [0.05, 0.05, 0.85, 0.05], [0.05, 0.05, 0.05, 0.85] and [0.1, 0.4, 0.4, 0.1] — (see

Figure 3), whereas z(0)(1)x and z
(0)
(2)x are obtained by manually fixing an evolution across ages for the total

of non–empty clusters and the number of causes allowed to change group among consecutive ages. Con-

versely, the selection of which specific causes are considered for these transitions and the updated group

allocations for such causes are performed randomly (see Figure 2 for a graphical representation of z(0)(1)x

and z
(0)
(2)x, x = 1, . . . , 10). In this way, the partitions to be inferred are not simulated from the assumed

prior, thereby providing a more realistic assessment of the model proposed. For this same reason, we

further test our construction in a second simulation scenario consisting of sequences of undirected net-

works with block structures regulated by a single partition z
(0)
x , for x = 1, . . . , 10, that is common to
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Figure 2: Riverplots representing the evolution of z
(0)
(1)x and z

(0)
(2)x, x = 1, . . . , 10 in the first scenario, and z

(0)
x , x =

1, . . . , 10 in the second scenario.
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Figure 3: For the first simulation scenario (directed), graphical representation of the block–specific parameters, θ(0)hkxc,
evolving over age classes x = 1, . . . , 10 and stratified by category c = 1, . . . , 4. The numbered rows and columns corre-
spond to row– and column–specific groups. White cells correspond to pairs of empty groups at the specific ages.

both rows and columns. Recalling our previous discussion, this setting is favorable to the model of Ma-

tias and Miele (2017) and can be simulated similarly to the directed case by forcing z
(0)
(1)x = z

(0)
(2)x = z

(0)
x ,

θ
(0)
hkx = θ

(0)
khx, and yijx = yjix for each x = 1, . . . , 10 (see Figure 2 for a graphical illustration of z(0)x ,

x = 1, . . . , 10). Notice that, in both scenarios, we do not consider supervision by external covariates w

to avoid an overly–penalized treatment of the model by Matias and Miele (2017), which is not de-

signed to include this additional source of information. When w is not available, it suffices to remove

(n̄
(−i)
hwi

+ awwi
)/(n̄

(−i)
h• + aw• ) and awwi

/aw• in (3) for adapting our formulation to the unsupervised case.

Given the above simulated data, we perform posterior inference under the Bayesian model proposed

within Section 2 leveraging diffuse Dirichlet(1, 1, 1, 1), Beta(1, 1) and Gamma(0.002, 0.001) priors on

the block–specific parameters vectors, the transition probabilities and the crp concentration parame-
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ters, respectively. Under such settings, posterior samples for z(1)1, . . . , z(1)10 and z(2)1, . . . , z(2)10 in the

first simulation scenario can be obtained via the tempered Gibbs–sampler developed in Sections 3.1–

3.2. Such a routine can be also adapted to the second scenario by sampling from the posterior of a single

sequence z1, . . . , z10 (having the same prior as z(1)1, . . . , z(1)10 and z(2)1, . . . , z(2)10), while replacing the

likelihood induced by directed networks with the one arising in undirected settings, where yijx = yjix,

and hence, θhkx = θkhx. As a consequence, in the directed case, p(Y1, . . . ,Ym | zx, x = 1, . . . ,m) =∏m
x=1(

∏Hx

h=1

∏h
k=1[{Γ(aθ•)/Γ(aθ• + nhkx•)}

∏4
c=1{Γ(aθc + nhkxc)/Γ(a

θ
c)}]).

Under the above routines, we consider 4,000 posterior samples for the sequences of partitions ana-

lyzed. Such samples are obtained after a conservative burn–in of 10,000 and thinning by 10 the subse-

quent 40,000 draws. The study of the traceplots for the logarithm of the likelihoods associated with the

two simulation scenarios does not provide evidence against convergence, and showcase adequate mixing.

As such, the produced samples are leveraged to obtain a posterior point estimate for z(1)1, . . . , z(1)10 and

z(2)1, . . . , z(2)10 in the first scenario, and z1, . . . , z10 in the second, via the strategies in Section 3.3.

Figure 4 illustrates the quality of these estimated partitions in recovering the true ones behind the

generative mechanism of the simulated data in scenario one (i.e., z(0)(1)1, . . . , z
(0)
(1)10 and z

(0)
(2)1, . . . , z

(0)
(2)10)

and two (i.e., z(0)1 , . . . , z
(0)
10 ). Such a quality is quantified in 50 replicated experiments under both sce-

narios via the most widely–implemented measures of clustering accuracy, namely, the rand index (ri)

(Rand, 1971), the adjusted rand index (ari) (Hubert and Arabie, 1985), and the normalized mutual in-

formation (nmi) (Strehl and Ghosh, 2002). These three measures take values below 1 (which corre-

sponds to perfect overlap among the two partitions compared), and are computed also for the estimates

produced by the model of Matias and Miele (2017) under its implementation in the R library dynsbm. As

discussed previously, this competitor does not automatically infer the number of non–empty clusters.

As such, we explore three specifications with this quantity set equal to 3, 6 and 9, where 3 corresponds

to an underparameterized model, 6 is the true maximum number of clusters in the data, and 9 repre-

sents a flexible overparameterized formulation. Moreover, as suggested by the authors, we obtain the

maximum likelihood estimate of the partitions via a multi–start routine from 25 different initial points.

As shown in Figure 4, our proposed model almost perfectly estimates all the partitions across ages,

in both scenarios, and systematically outperforms the clustering accuracy achieved by the state–of–the–
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Figure 4: Accuracy of the proposed model and of the one designed by Matias and Miele (2017) (under three specifications
for the total number of clusters) in estimating the true group membership vectors z

(0)
(1)x and z

(0)
(2)x, x = 1, . . . , 10 in the

first scenario, and z
(0)
x , x = 1, . . . , 10 in the second scenario. The performance is measured under the rand index (ri),

adjusted rand index (ari), and normalized mutual information (nmi). The points, thick lines, and thin lines represent,
respectively, the medians, the inter–quartile ranges, and the ranges of the considered measures over 50 replicated exper-
iments of the two simulation scenarios under analysis.

art alternative in Matias and Miele (2017). The remarkable gains obtained in the first scenario clarify

the importance of allowing for two separate partitions on the rows and columns in directed networks

displaying asymmetric block patterns within the adjacency matrix. As discussed in Section 1.1 (see also

Figure 1), this is the case of our causes–of–death networks, thereby highlighting the need for a model as

the one we propose in Section 2 to avoid the substantial bias that would arise when adapting available

solutions to our motivating application. Interestingly, our model outperforms Matias and Miele (2017)

also in the second scenario, where the focus is on those undirected settings favorable to the competitor

under analysis. This clarifies that, besides the increased flexibility provided by the inclusion of two

separate partitions in directed settings, the evolution process induced by the prior in Section 2.2 on

the sequence of partitions appears to be a superior construction in more general settings, including in

undirected ones. Unlike for Matias and Miele (2017), the process we employ allows the number of non–

empty groups to change with ages and to be automatically inferred. These advantages motivate the

use of the proposed model in the analysis of the causes–of–death networks introduced in Section 1. A

detailed presentation of the important findings obtained from this analysis is provided in Section 5.
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5 Application to USA Cause–of–Death Networks

We conclude by illustrating the potential of the proposed model in unveiling group structures and mod-

ular interactions among causes of death that were hidden to previous studies of the usa data presented

in Section 1.1. In line with standard practice in demography, we apply the model separately to male

and female populations. Posterior inference relies on the same hyperparameters and mcmc settings as

in the simulation studies to assess the robustness of these default choices in general contexts.

5.1 Empirical Results and Findings

As a first important assessment, Figure 5 displays the age–specific adjacency matrices of the observed

co–occurrence networks among underlying and contributing causes, with rows and columns re–ordered

according to the groups estimated by our model. This representation clarifies that the inclusion of two

separate partitions varying with age classes is essential to obtain an accurate characterization of the

block structures in the observed networks for both males and females. In addition, it confirms that

our model provides an highly–effective construction in achieving such an objective, thus motivating an

in–depth analysis of the composition and evolution across ages of the estimated partitions.

Consistent with the above discussion, Figure 6 presents the minimum–vi point estimates of the par-

titions for the underlying and contributing causes across age classes in both the female and male pop-

ulations. The slowly–varying number of groups across different life stages — ranging from 3 to 8 for

females, and from 3 to 10 for males — further supports the need for a model that allows for smoothly–

evolving partition structures across ages. Notice how the total number of non–empty groups increases

progressively with age classes, particularly in the middle and late adulthood, highlighting the growing

complexity of the causes–of–death landscape, which reflects the broadening range of health conditions

contributing to mortality. Correspondingly, the average group size declines with age classes, thereby

unveiling the increasing heterogeneity in the interactions between underlying and contributing causes

(see also Figure 5). As is evident from Figure 6, such an heterogeneity results from smooth fragmenta-

tions of medium–to–large underlying and contributing groups driven by diverging interaction patterns

between specific subsets of causes. These peculiar transition patterns are studied in detail in the follow-

ing through the analysis of specific meet clusters, and crucially expand available findings on underlying
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Figure 5: Observed co–occurrence networks among underlying and contributing causes of death at different age classes
in the USA male (top) and female (bottom) populations. Rows and columns of the adjacency matrices are re–ordered
according to the group structures estimated under the dependent stochastic block model proposed in Section 2.

(Bergeron-Boucher et al., 2020; Calazans and Permanyer, 2023) and multiple (Trias-Llimós and Per-

manyer, 2023) causes–of–death diversity by clarifying that systematic heterogeneity increments are

found also in higher–level block–interactions among underlying and contributing causes over ages.

Among the aforementioned transition and fragmentation patterns, a relevant one, which has re-

ceived limited attention in the literature, refers to evolution of group 1 displayed in Figures 5–6 for both

the underlying and contributing causes. As illustrated within Figure 5, such a group comprises non–

interacting causes which are often removed from the analysis when the focus is on a single age class or on

an aggregated network for a subset of ages. Albeit common, this practice neglects the fact that causes

appearing as non–interacting at given age classes may display meaningful co–occurrences at other ages,

thereby hindering the possibility to infer such peculiar transition mechanism from non–interacting to

interacting blocks across age classes. In fact, addressing this objective is a key to understand at which

ages specific causes join or exit inactive groups, a crucial information in the design of targeted policies.
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Figure 6: Riverplots representing the evolution of the estimated partitions ẑ(1)x and ẑ(2)x over age classes x = 1, . . . , 11
in the female and male populations. The size of each bar is proportional to the cardinality of the inferred group.

Consistent with this aim, we retain all the causes of death in our analysis, and let the proposed model

infer non–interacting groups along with the associated evolution across ages.

As illustrated in Figures 5–6, the above information is present in the estimated group 1 across age

classes, for both the underlying and contributing causes. At age 0–1, this group includes a large num-

ber of causes not typically associated with perinatal mortality, and then progressively fades at subse-

quent ages, further confirming the increasing heterogeneity of the causes–of–death landscape (which is

apparent also in terms of additional underlying and contributing causes joining the active groups). In-

terestingly, Figure 6 highlights a slight increase in the size of group 1 at age classes 80–90 and 90–100.

While this pattern deserves further exploration, it may evidence selection effects in late life combined

with susceptibility to fewer interactions among prevalent underlying and contributing causes.

Note that the change in size of group 1 is not only due to the emergence of causes exiting the inactive

set at age 0–1. Rather, causes both appear and disappear with ages. For example, conditions associated

with perinatal issues and malformations enter this group beyond the initial age class. Notably, while

the most perinatal causes regarded as contributing factors are rapidly absorbed in group 1 by the second

age class, many of these conditions (such as respiratory and cardiovascular disorders, and infections

specific to the perinatal period) persist longer when regarded as underlying causes, joining group 1 only
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at later stages. This reflects the possibility that conditions emerging in the perinatal period may not

turn out to be fatal at the same stage, but may persist into later life to become the cause that initiated

the course of morbid events that led to death. In contrast, the same causes are unlikely to assume a

contributing role in adulthood. Conversely, the causes exiting group 1 to join active clusters allow us

to detect when a certain disease starts entering the mortality process and which already–active causes

showcase its similar co–occurrence patterns. For example, in the female population, neoplasms of the

respiratory organs, bones, and urinary tract exit group 1 in the transition between 0–1 years and 1–10

years, both for the underlying and contributing causes. Other forms of neoplasms, such as those of the

breast and female genital organs, enter the mortality process when transitioning from 1–10 to 10–20

years for the underlying causes, while this transition only manifests from 10–20 to 20–30 years in the

contributing causes. This suggests an asymmetry in the process, which may be due to the fact that

early breast cancer is unlikely to be detected and thus is more likely to cause death as underlying factor

rather than contributing one. Other gender–specific phenomena also emerge, particularly in older age

groups for contributing causes. These differences, motivate further research on how contributing causes

interact differently with underlying ones in males and females.

To further expand the results in Figures 5–6, we quantify in Figure 7 the evolution of the similar-

ity among the estimated partitions not only across consecutive age classes, but also with respect to

contemporary group structures of the underlying and contributing causes at the same age. These pat-

terns are measured through nmi(ẑ(1)x, ẑ(1)x−1), nmi(ẑ(2)x, ẑ(2)x−1) and nmi(ẑ(1)x, ẑ(2)x), respectively, for

each x, and provide additional empirical support in favor of our model. In particular, the evolution of

nmi(ẑ(1)x, ẑ(2)x) evidences marked and stable differences among the partition structures of underlying

female male
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Figure 8: Group–specific marginal connectivity scores (mcs) over age classes for underlying (top) and contributing (bot-
tom) causes in the female population, stratified by three macro–categories (circulatory, mental, and pregnancy). Point
size is proportional to the number of causes in each macro–category belonging to a given group.

and contributing causes. These asymmetries confirm the need for two separate partitions and highlight

how causes display different group behaviors when acting as underlying or contributing. The impor-

tance of incorporating adaptive smoothness through age–specific persistence parameters α(1)x and α(2)x

is instead confirmed by the evolution of nmi(ẑ(1)x, ẑ(1)x−1) and nmi(ẑ(2)x, ẑ(2)x−1) which showcase higher

similarities among consecutive partitions of underlying and contributing causes, respectively, with an

increasing trend that tends to stabilize at elder ages.

While Figures 5, 6 and 7 inform on the overall structure and transitions of the inferred groups, Fig-

ure 8 summarizes the relevance of such groups in terms of co–occurrence strengths and the associated

composition with respect to three macro–categories of interest, namely, circulatory system conditions,

mental health, and pregnancy–related causes. These macro–categories appear in the different panels

of Figure 8, where each point corresponds to a group and its size is proportional to the ratio between

the number of causes from the macro–category analyzed that have been allocated to that group and

the total number of causes in such a macro–category. Hence, points of large size correspond to groups

absorbing most of the causes of death from the macro–category analyzed. The vertical axis measures

instead the overall intensity displayed by the underlying (contributing) causes of a given group in co–
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occurring with those of all the contributing (underlying) clusters. These marginal connectivity scores

(mcs) are defined as the averaged probability of observing a present or frequent interaction between

the causes of a given underlying (contributing) group h (k) and those belonging to a generic contribut-

ing (underlying) cluster k = 1, . . . , Kx (h = 1, . . . , Hx). More specifically, at each age class we compute

mcs(1)hx = (1/K̂x)
∑K̂x

k=1(θ̂hkx3+ θ̂hkx4), for h = 1, . . . , Ĥx, and mcs(2)kx = (1/Ĥx)
∑Ĥx

h=1(θ̂hkx3+ θ̂hkx4),

for k = 1, . . . , K̂x, where θ̂hkx3 and θ̂hkx4 are obtained as in (9). The analysis of such measures in Fig-

ure 8, interestingly shows that pregnancy–related causes, while rare overall, appear almost exclusively

as underlying causes among women of childbearing age, with minimal presence as contributing factors.

Mental health–related causes also display distinct patterns across panels, reflecting an evolving role in

the progression of disease. As age grows, these conditions become increasingly common as contributing

causes. In contrast, among women over 70, high prevalence as underlying causes is limited to organic

mental disorders, including symptomatic conditions such as Alzheimer’s and dementia, concentrated in

cluster 5. Circulatory system conditions are infrequent at younger ages but become more prominent in

later stages for both roles. Still, underlying and contributing patterns diverge. For instance, five of the

six circulatory causes (hypertensive, ischemic, pulmonary, cerebrovascular, and other heart diseases)

co–cluster early (by ages 30–40) as underlying causes with high mcs(1)hx. In contrast, contributing roles

are more fragmented, with these conditions spreading across groups of varying mcs(2)hx.

We conclude by exploring in more detail persistent groups and peculiar fragmentation patterns that

arise in the female and male population at elder (60–70, 70–80, 80–90) and adolescent/early–adulthood

(10–20, 20–30, 30–40) ages, respectively. These analyses rely on the study of the meet clusters intro-

duced in Section 3.3 (see Figures 9–10) and highlight yet–unexplored patterns that contribute to an

improved understanding of the determinants underlying the recent growing mid–life mortality in the

usa (e.g., Woolf and Schoomaker, 2019; Mehta et al., 2020; Case and Deaton, 2021). Focusing first on

the female population, Figure 9 unveils a number of interesting meet clusters both in terms of composi-

tion and evolution. This is the case, for example, of the underlying meet clusters 9 (which includes res-

piratory and genitourinary conditions) and 10–11 (that comprise mental disorders and central nervous

system neoplasms, respectively). While these three subsets of causes form a single group in the 60–70

class, at subsequent ages the meet cluster 9 eventually creates a separate group due to different co–
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Figure 9: Adjacency matrices of the co–occurrence networks among underlying and contributing causes for USA female
elder population. Rows and columns are re–ordered by estimated groups (colors) and meet clusters (lines–numbers).

occurrence strengths with the contributing causes in the meet cluster 20 (which consists of severe con-

ditions such as lymphoid, breast and female genital neoplasms, and lung diseases caused by external

agents). Similarly, the underlying meet clusters 19 and 20 (circulatory system causes and neoplasms,

respectively) initially belong to the same group, due to similar interaction patterns with contributing

causes. By age 80–90, however, the weakening of co–occurrences between the causes of the underlying

meet cluster 20 and those of the contributing meet clusters 20 and 25 is in contrast with the strengthen-

ing of the interactions showcased by the underlying meet cluster 19, thereby yielding to a fragmentation

in two separate groups. Notice that, although modest in size, the contributing meet cluster 25 (ex-

trapyramidal and movement disorders, osteoarthritis and inflammatory polyarthropathies and other

osteopathies), shows a very distinct pattern in the transition from the 70–80 to the 80–90 age class, as it

separates from the adjacent meet clusters, primarily due to a strengthening of the co–occurrences with

causes from the underlying meet cluster 19. Interestingly, such a shift might signal an onset of age–

related mobility dysfunctions contributing to death by aggravating circulatory conditions.

We now turn our attention to the analysis of the meet clusters for the male population in those age

classes that have witnessed peculiar mortality increments in usa over the recent years. As clarified in

Figure 10, although the determinants of such increments have generated a debate around different views

(Woolf and Schoomaker, 2019; Mehta et al., 2020; Case and Deaton, 2021), a detailed analysis of the

meet clusters and modules inferred by our model may lead to a consensus among such views.

Focusing first on the contributing causes, it is possible to recognize the meet cluster 11 as a highly–
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Figure 10: Adjacency matrices of the co–occurrence networks among underlying and contributing causes for USA male
young population. Rows and columns are re–ordered by estimated groups (colors) and meet clusters (lines–numbers).

active one in the age class 10–20. This cluster mostly comprises various forms of heart and acute res-

piratory diseases that often arise from infectious phenomena common to young ages. In fact, at early–

adulthood stages, the meet cluster 11 becomes progressively less active, whereas the contributing meet

clusters 7 and 10 start displaying more intense interactions. Interestingly, these clusters include causes

such as mental and behavioral disorders due to psychoactive substance use, diabetes mellitus, hyper-

tensive diseases, diseases of liver, metabolic disorders, ischemic heart diseases, pulmonary heart disease

and diseases of pulmonary circulation. This is an important finding which clarifies that, although cur-

rent literature views cardiovascular diseases (Mehta et al., 2020) and “death of despair” type causes

(Woolf and Schoomaker, 2019; Case and Deaton, 2021) as alternative explanations of the recent incre-

ments in usa mid–life mortality, in fact, such causes cluster together, and hence, should not be treated

as alternatives to each other, but rather as closely related and jointly contributing to overall mortality

patterns. Such a result is further reinforced by the analysis of the underlying meet clusters in Figure 10,

which display high co–occurrences for the meet clusters from 16 to 20 in the age class 10–20. Similarly

to the contributing meet cluster 11, these groups mainly encompass conditions related to respiratory

diseases (e.g., flu, pneumonia, chronic lower respiratory diseases), and further contain nervous system

disorder (e.g., episodic and paroxysmal disorders, cerebral palsy and other paralytic syndromes, other

disorders of the nervous system) along with neoplasms (e.g., musculoskeletal, eye, brain, central ner-

vous system and endocrine gland cancers). Conversely, in populations aged 20–30 and 30–40, a second

group of meet clusters (12, 13, 14) emerges through a transition from a low–interactions group (orange)
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to the more active one (green). Interestingly, such a subset displays increasingly–strong co–occurrences

with the contributing meet clusters 7 and 10, and is composed by a similar combination of cardio-

vascular and “death of despair” type causes. This result further strengthens the fact that the recent

increments in usa mid–life mortality might arise from complex joint interactions among stochastically

equivalent groups of underlying and contributing causes that appeared as alternatives to each other in

previous analyses focused only on the underlying cause (see, e.g., Woolf and Schoomaker, 2019; Mehta

et al., 2020; Case and Deaton, 2021), rather than on multiple interacting ones.

6 Conclusions and Future Research

Motivated by the importance of achieving an in–depth understanding of the core structures regulating

cause–of–death networks across ages, and by the lack of a suitable statistical model capable of inferring

such structures, we designed in Sections 2 and 3 an innovative stochastic block model for sequences of

categorically–weighted directed networks. Consistent with empirical evidence from real–data applica-

tions, such a model accounts for modular interactions among groups of causes, and crucially allows for

two separate partition structures on the rows and columns of the asymmetric adjacency matrices, cor-

responding to underlying and contributing causes of death, respectively. Under a Bayesian approach

to inference, these partitions are assigned flexible priors that induce smooth transitions in the group

structures across age classes, further informed by external macro–classifications of death causes.

The simulation studies in Section 4 confirm that the proposed model is superior to state–of–the–art

alternatives not only in realistic settings aligned with the motivating cause–of–death application, but

also in simpler undirected networks scenarios favorable to currently–available formulations. This mo-

tivates an extensive use of the proposed model in a wide variety of situations where multiple directed

(or undirected) networks are observed across a temporal index. The application to usa causes–of–

death networks in Section 5 further confirms this point by showcasing the potential of the proposed

model in unveiling fundamental group structures among underlying and contributing causes that were

hidden from classical mcod and single–cause analyses. Besides the potential policy implications, the

evolution and composition of such groups plays also an important role in the understanding of modern

mortality trends, such as the recent increment of mid–life mortality in the usa.
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Interesting directions for future research emerge from our contribution. A natural one is to include

further dimensions within our model, such as calendar years, geographical units (e.g., usa states), and

others. This would require the design of a joint prior for random partitions that induces dependence

not only between consecutive age classes, but also across contiguous calendar years and spatially–close

units. Representations of this type could be found in the ongoing literature on Bayesian nonparametric

priors relying on notions of separate exchangeability (Rebaudo et al., 2025), conditional partial ex-

changeability (Franzolini et al., 2025) and combinations of these two notions. Any advancement along

these lines could be inherited within our formulation and would also help in the design of a joint model

for the male and female populations that borrows information among the associated partitions.

Besides the above methodological extensions, it shall be emphasized that the proposed model natu-

rally applies also to (rectangular) bipartite networks encoding interactions (possibly varying with a tem-

poral index) among two different sets of entities (e.g., users and items interactions across years in rec-

ommender systems’ applications), thereby motivating further exploration of the potential of our con-

struction also in these settings. Additional empirical analyses are also of interest within the motivating

causes–of–death application to assess whether the inferred group structures are robust to changes in

the way through which interactions are defined. For example, as anticipated in Section 1.1, one option

could be to replace the discretized co–occurrence strengths we employ, with normalized versions of the

pairwise co–occurrence counts accounting for the overall degree of appearance of the involved causes in

death certificates (Hidalgo et al., 2009; Chmiel et al., 2014; Fotouhi et al., 2018). Preliminary analyses

show that the group structures we infer align also with the block patterns induced by this measure.
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